Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subnanosecond spectral diffusion measurement using photon correlation

Abstract

Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral diffusion measurements with photon correlations.
Figure 2: Influence of the width and position of the spectral windows in cross-correlations.
Figure 3: Simplified level scheme used for the rate equation model of SD.
Figure 4: Correlated spectral diffusion between two lines.

Similar content being viewed by others

References

  1. Klauder, J. R. & Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912–932 (1962).

    Article  ADS  Google Scholar 

  2. Flach, R., Hamilton, D. S., Selzer, P. M. & Yen, W. M. Time-resolved fluorescence line-narrowing studies in LaF3: Pr3+. Phys. Rev. Lett. 35, 1034–1037 (1975).

    Article  ADS  Google Scholar 

  3. Szabo, A. & Kaarli, R. Optical hole burning and spectral diffusion in ruby. Phys. Rev. B 44, 12307–12313 (1991).

    Article  ADS  Google Scholar 

  4. Ambrose, W. P. & Moerner, W. E. Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349, 225–227 (1991).

    Article  ADS  Google Scholar 

  5. Zumbusch, A., Fleury, L., Brown, R., Bernard, J. & Orrit, M. Probing individual two-level systems in a polymer by correlations of single molecule fluorescence. Phys. Rev. Lett. 70, 3584–3587 (1993).

    Article  ADS  Google Scholar 

  6. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  ADS  Google Scholar 

  7. Robinson, H. D. & Goldberg, B. B. Light-induced spectral diffusion in single self-assembled quantum dots. Phys. Rev. B 61, R5086–R5089 (2000).

    Article  ADS  Google Scholar 

  8. Türck, V. et al. Effect of ramdom field fluctuations on excitonic transitions of individual CdSe quantum dots. Phys. Rev. B 61, 9944–9947 (2000).

    Article  ADS  Google Scholar 

  9. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Few-particle effects in single CdTe quantum dots. Phys. Rev. B 65, 121314 (2002).

    Article  ADS  Google Scholar 

  10. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  ADS  Google Scholar 

  11. Palinginis, P., Tavenner, S., Lonergan, M. & Wang, H. Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals. Phys. Rev. B 67, 201307 (2003).

    Article  ADS  Google Scholar 

  12. Brokmann, X., Bawendi, M. G., Coolen, L. & Hermier, J. P. Photon-correlation Fourier spectroscopy. Opt. Express 14, 6333–6341 (2006).

    Article  ADS  Google Scholar 

  13. Coolen, L., Brokmann, X. & Hermier, J. P. Modeling coherence measurements on a spectrally diffusing single-photon emitter. Phys. Rev. A 76, 033824 (2007).

    Article  ADS  Google Scholar 

  14. Coolen, L., Brokmann, X., Spinicelli, P. & Hermier, J. P. Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).

    Article  ADS  Google Scholar 

  15. Aichele, T. et al. Defect-free ZnSe nanowire and nanoneedle nanostructures. Appl. Phys. Lett. 93, 143106 (2008).

    Article  ADS  Google Scholar 

  16. Sallen, G. et al. Exciton dynamics of a single quantum dot embedded in a nanowire. Phys. Rev. B 80, 085310 (2009).

    Article  ADS  Google Scholar 

  17. Tribu, A. et al. A high-temperature single-photon source from nanowire quantum dots. Nano Lett. 8, 4326–4329 (2008).

    Article  ADS  Google Scholar 

  18. Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys. 2, 759–764 (2006).

    Article  ADS  Google Scholar 

  19. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the very efficient technical support of F. Donatini and careful reading of the manuscript by Le Si Dang and G. Nogues. T.A. acknowledges support from the Deutscher Akademischer Austauschdienst (DAAD). Part of this work was supported by the European project QAP (contract no. 15848).

Author information

Authors and Affiliations

Authors

Contributions

G.S. conducted the optical experiments and analysed the data. A.T., T.A., R.A., S.T. and K.K. carried out fabrication and processing of the samples, and C.B. performed their structural analysis. G.S., L.B., M.R. and J.P.P. contributed to the genesis of the idea and to the discussion of the results. J.P.P. supervised the optical experiments and wrote the paper.

Corresponding author

Correspondence to J.-Ph. Poizat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallen, G., Tribu, A., Aichele, T. et al. Subnanosecond spectral diffusion measurement using photon correlation. Nature Photon 4, 696–699 (2010). https://doi.org/10.1038/nphoton.2010.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing