Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antennas for light

Abstract

Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antenna design.
Figure 2: Examples of top-down fabricated optical antennas.
Figure 3: An antenna enhances the transmission efficiency from the transmitter to the receiver.
Figure 4: Biological imaging with optical antennas.
Figure 5: Example of a bottom-up fabricated optical antenna.
Figure 6: SEM images of two types of infrared antennas.

Similar content being viewed by others

References

  1. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Google Scholar 

  2. Taminiau, T. H., Stefani, F. D. & van Hulst, N. F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna. Opt. Express 16, 10858–10866 (2008).

    ADS  Google Scholar 

  3. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Google Scholar 

  4. Cao, L., Park, J.-S., Fan, P., Clemens, B. & Brongersma, M. L. Resonant Germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    ADS  Google Scholar 

  5. Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006).

    ADS  Google Scholar 

  6. Pillai, S., Catchpole, K., Trupke, T. & Green, M. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    ADS  Google Scholar 

  7. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    ADS  Google Scholar 

  8. DeWilde, Y. et al. Thermal radiation scanning tunnelling microscopy. Nature 444, 740 (2006).

    ADS  Google Scholar 

  9. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    ADS  Google Scholar 

  10. Novotny, L. & Stranick, S. J. Near-field optical microscopy and spectroscopy with pointed probes. Ann. Rev. Phys. Chem. 57, 303–331 (2006).

    ADS  Google Scholar 

  11. Muehlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Google Scholar 

  12. Taminiau, T. H. et al. Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).

    ADS  Google Scholar 

  13. Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F. & Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008).

    ADS  Google Scholar 

  14. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    ADS  Google Scholar 

  15. Kalkbrenner, T. et al. Optical microscopy via spectral modifications of a nanoantenna. Phys. Rev. Lett. 95, 200801 (2005).

    ADS  Google Scholar 

  16. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    ADS  Google Scholar 

  17. Pohl, D. W. Near-field optics seen as an antenna problem in Near-field Optics, Principles and Applications (eds Zhu, X. & Ohtsu, M.) 9–21 (World Scientific, 2000).

    Google Scholar 

  18. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    ADS  Google Scholar 

  19. Wessel, J. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B 2, 1538–1540 (1985).

    ADS  Google Scholar 

  20. Fischer, U. C. & Pohl, D. W. Observation on single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 62, 458–461 (1989).

    ADS  Google Scholar 

  21. Hocker, L. O., Sokoloff, D. R., V. Daneu, A. S. & Javan, A. Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode. Appl. Phys. Lett. 12, 401–402 (1968).

    ADS  Google Scholar 

  22. Fetterman, H. R., Clifton, B. J., Tannenwald, P. E. & Parker, C. D. Submillimeter detection and mixing using Schottky diodes. Appl. Phys. Lett. 24, 70–72 (1974).

    ADS  Google Scholar 

  23. Fetterman, H. R. et al. Far-IR heterodyne radiometric measurements with quasioptical Schottky diode mixers. Appl. Phys. Lett. 33, 151–153 (1978).

    ADS  Google Scholar 

  24. Alda, J., Rico-Garcia, J., Lopez-Alonso, J. & Boreman, G. Optical antennas for nano-photonic applications. Nanotechnology 16, S230–S234 (2005).

    ADS  Google Scholar 

  25. Gonzalez, F. & Boreman, G. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 146, 418–428 (2004).

    Google Scholar 

  26. Grober, R. D., Schoelkopf, R. J. & Prober, D. E. Optical antenna: towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997).

    ADS  Google Scholar 

  27. Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    ADS  Google Scholar 

  28. Frey, H. G., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).

    ADS  Google Scholar 

  29. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Google Scholar 

  30. Hoeppener, C. & Novotny, L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008).

    ADS  Google Scholar 

  31. van Zanten, T. S., Lopez-Busquets, M. J. & Garcia-Parajo, M. F. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. Small 6, 270–275 (2010).

    Google Scholar 

  32. Hecht, B., Muehlschlegel, P., Farahani, J., Eisler, H.-J. & Pohl, D. W. Resonant optical antennas and single emitters in Tip Enhancement (eds Kawata, S. & Shalaev, V. M.) 275–307 (Elsevier, 2007).

    Google Scholar 

  33. Gevaux, D. Nano-antenna picks up green light. Nature Photon. 1, 90 (2007).

    ADS  Google Scholar 

  34. Novotny, L. Optical antennas tuned to pitch. Nature 455, 879–880 (2008).

    ADS  Google Scholar 

  35. Greffet, J.-J. Nanoantennas for light emission. Science 308, 1561–1563 (2005).

    Google Scholar 

  36. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    ADS  Google Scholar 

  37. Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003).

    ADS  Google Scholar 

  38. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    ADS  Google Scholar 

  39. Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photon. 4, 312–315 (2010).

    Google Scholar 

  40. Novotny, L. The history of near-field optics. Prog. Opt. 50, 137–180 (2007).

    ADS  Google Scholar 

  41. Bryant, G. W., de Abajo, F. J. G. & Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008).

    ADS  Google Scholar 

  42. Sfeir, M. Y. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312, 554–556 (2006).

    ADS  Google Scholar 

  43. Burke, P. J., Li, S. & Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotech. 5, 314–334 (2006).

    ADS  Google Scholar 

  44. Hao, J. & Hanson, G. W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE T. Nanotechnol. 5, 766–775 (2006).

    ADS  Google Scholar 

  45. Blankenship, R., Madigan, M. T. & Bauer, C. E. (eds) Anoxygenic Photosynthetic Bacteria (Kluwer, 1995).

    Google Scholar 

  46. Falk, A. L. et al. Near-field electrical detection of optical and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

    ADS  Google Scholar 

  47. Bean, J. A., Tiwari, B., Bernstein, G. H., Fay, P. & Porod, W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technnol. B 27, 11–14 (2009).

    Google Scholar 

  48. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  Google Scholar 

  49. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Google Scholar 

  50. Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).

    ADS  Google Scholar 

  51. Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).

    ADS  Google Scholar 

  52. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Google Scholar 

  53. Rust, M., Bates, M. & Zhuang, X. Sub-diffraction limit imaging by stochastic optical reconstruction microscopy (storm). Nat. Methods 3, 793–796 (2006).

    Google Scholar 

  54. Sanchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

    ADS  Google Scholar 

  55. Gerton, J. M., Wade, L. A., Lessard, G. A., Ma, Z. & Quake, S. R. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93, 180801 (2004).

    ADS  Google Scholar 

  56. Hartschuh, A., Sanchez, E., Xie, X. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    ADS  Google Scholar 

  57. Kuehn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    ADS  Google Scholar 

  58. Bharadwaj, P. & Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007).

    ADS  Google Scholar 

  59. Garcia-Parajo, M. F. Optical antennas focus in on biology. Nature Photon. 2, 201–203 (2008).

    ADS  Google Scholar 

  60. Weber-Bargioni, A. et al. Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography. Nanotechnology 21, 065306 (2010).

    ADS  Google Scholar 

  61. Palomba, S. & Novotny, L. Near-field imaging with a localized nonlinear light source. Nano Lett. 9, 3801–1804 (2009).

    ADS  Google Scholar 

  62. Rodriguez-Lorenzo, L. et al. Zeptomol detection through controlled ultrasensitive surface enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009).

    Google Scholar 

  63. Renger, J., Quidant, R., Hulst, N. V. & Novotny, L. Surface enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).

    ADS  Google Scholar 

  64. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    ADS  Google Scholar 

  65. Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).

    ADS  Google Scholar 

  66. Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    ADS  Google Scholar 

  67. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    ADS  Google Scholar 

  68. Bouhelier, A., Beversluis, M. R. & Novotny, L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl. Phys. Lett. 83, 5041–5043 (2003).

    ADS  Google Scholar 

  69. Schuck, P., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Google Scholar 

  70. Miller, D. A. B. Fundamental limit for optical components. J. Opt. Soc. Am. B 24, A1–A18 (2007).

    ADS  Google Scholar 

  71. Alu, A. & Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 101, 043901 (2008).

    ADS  Google Scholar 

  72. Alu, A. & Engheta, N. Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys. Rev. B 78, 195111 (2008).

    ADS  Google Scholar 

  73. Olmon, R. L., Krenz, P. M., Jones, A. C., Boreman, G. D. & Raschke, M. B. Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16, 20295–20305 (2008).

    ADS  Google Scholar 

  74. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon. 3, 287–291 (2009).

    ADS  Google Scholar 

  75. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Google Scholar 

  76. Hofmann, H. F., Kosako, T. & Kadoya, Y. Design parameters for a nano-optical Yagi–Uda antenna. New J. Phys. 9, 217–217 (2007).

    ADS  Google Scholar 

  77. Li, J., Salandrino, A. & Engheta, N. Shaping light beams in the nanometer scale: A Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403 (2007).

    ADS  Google Scholar 

  78. Guo, H. et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express 16, 7756–7766 (2008).

    ADS  Google Scholar 

  79. Biagioni, P., Huang, J. S., Duò, L., Finazzi, M. & Hecht, B. Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009).

    ADS  Google Scholar 

  80. Esteban, R., Teperik, T. V. & Greffet, J.-J. Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 026802 (2010).

    ADS  Google Scholar 

  81. Abdel-Rahman, M. R., Monacelli, B., Weeks, A. R., Zummo, G. & Boreman, G. D. Design, fabrication and characterization of antenna-coupled metal-oxide-metal diodes for dual-band detection. Opt. Eng. 44, 066401 (2005).

    ADS  Google Scholar 

  82. Li, K., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    ADS  Google Scholar 

  83. Puente-Biliarda, C., Romeu, J., Pous, R. & Cardama, A. On the behavior of the sierpinski multiband fractal antenna. IEEE T. Antenn. Propag. 46, 517–524 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  84. Curto, A. G., Manjavacas, A. & de Abajo, F. J. G. Near-field focusing with optical phase antennas. Opt. Express 17, 17801–17811 (2009).

    ADS  Google Scholar 

  85. Huang, C. et al. Gain, detuning, and radiation patterns of nanoparticles optical antennas. Phys. Rev. B 88, 155407 (2008).

    ADS  Google Scholar 

  86. Huang, J.-S., Feichtner, T., Biagioni, P. & Hecht, B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9, 1897–1902 (2009).

    ADS  Google Scholar 

  87. Berthelot, J. et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett. 9, 3914–3921 (2009).

    ADS  Google Scholar 

  88. Greffet, J.-J., Laroche, M. & Marquier, F. Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).

    ADS  Google Scholar 

  89. Gimzewski, J. K., Reihl, B., Coombs, J. H. & Schlittler, R. R. Photon emission with the scanning tunneling microscope. Z. Phys. B 72, 497–501 (1988).

    ADS  Google Scholar 

  90. Schull, G., Nel, N., Johanson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    ADS  Google Scholar 

  91. Johansson, P., Monreal, R. & Apell, P. Theory for light emission from a scanning tunneling microscope. Phys. Rev. B 42, 9210–9213 (1990).

    ADS  Google Scholar 

  92. Persson, B. N. J. & Baratoff, A. Theory of photon emission in electron tunneling to metallic particles. Phys. Rev. B 68, 3224–3227 (1992).

    ADS  Google Scholar 

  93. Zurita-Sanchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. J. Opt. Soc. Am. B 19, 1355–1362 (2002).

    ADS  Google Scholar 

  94. Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    ADS  Google Scholar 

  95. Shalaev, V. M., Douketis, C., Haslett, T., Stuckless, T. & Moskovits, M. Two-photon electron emission from smooth and rough metal films in the threshold region. Phys. Rev. B 53, 11193–11206 (1996).

    ADS  Google Scholar 

  96. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    ADS  Google Scholar 

  97. Averitt, R. D., Sarkar, D. & Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78, 4217–4220 (1997).

    ADS  Google Scholar 

  98. Bharadwaj, P. & Novotny, L. Plasmon-enhanced photoemission from a single Y3N@C80 fullerene. J. Phys. Chem. C 114, 7444–7447 (2010).

    Google Scholar 

  99. Huang, J.-S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Comm. 1, 150 (2010).

    Google Scholar 

  100. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    ADS  Google Scholar 

  101. Stipe, B. C. et al. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photon. 4, 484–488 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

N.L. and N.v.H. thank C. Hoeppener and P. Bharadwaj for providing the particle trimer probe shown in Fig. 5a. They also thank T. Taminiau for valuable discussions. N.L. and N.v.H. thank M. Castro-Lopez, G. Volpe, L. Neumann, A. Curto, M. Kuttge and R. Quidant for providing several top-down fabricated antennas. L.N. acknowledges financial support from the US Department of Energy (DE-FG02-01ER15204) and the National Science Foundation (ECCS- 0918416 and ECCS-0651079). N.v.H. thanks the Spanish Ministry of Science and Innovation (CSD2007-046-NanoLight.es and FIS2009-08203), the Fundacio Cellex Barcelona and the European Research Council (AdvGrant ERC247330) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Novotny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotny, L., van Hulst, N. Antennas for light. Nature Photon 5, 83–90 (2011). https://doi.org/10.1038/nphoton.2010.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing