Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadband graphene polarizer

Abstract

Conventional polarizers can be classified into three main modes of operation: sheet polarizer using anisotropic absorption media, prism polarizer by refraction and Brewster-angle polarizer by reflection1. These polarizing components are not easily integrated with photonic circuits. The in-line fibre polarizer, which relies on polarization-selective coupling between the evanescent field and birefringent crystal2 or metal3,4,5,6,7, is a promising alternative because of its compatibility with most fibre-optic systems. Here, we demonstrate the operation of a broadband fibre polarizer based on graphene, an ultrathin two-dimensional carbon material. The out-coupled light in the telecommunication band shows a strong s-polarization effect with an extinction ratio of 27 dB. Unlike polarizers made from thin metal film, a graphene polarizer can support transverse-electric-mode surface wave propagation due to its linear dispersion of Dirac electrons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibre-to-graphene coupler and optical polarization.
Figure 2: Broadband polarizing effect of graphene.
Figure 3: Numerical model.
Figure 4: Numerical calculation of electromagnetic modes in graphene.

Similar content being viewed by others

References

  1. Goldstein, D. Polarized Light 2nd edn (Marcel Dekker, 2003).

    Book  Google Scholar 

  2. Bergh, R., Lefevre, H. & Shaw, H. Single-mode fiber-optic polarizer. Opt. Lett. 5, 479–481 (1980).

    Article  ADS  Google Scholar 

  3. Feth, J. & Chang, C. Metal-clad fiber-optic cutoff polarizer. Opt. Lett. 11, 386–388 (1986).

    Article  ADS  Google Scholar 

  4. Dyott, R. B., Bello, J. & Handerek, V. A. Indium-coated D-shaped-fiber polarizer. Opt. Lett. 12, 287–289 (1987).

    Article  ADS  Google Scholar 

  5. Andreev, A. T., Kozlov, V., Kuznetsov, A. & Maksimov, A. Single-mode fiber polarizers for the spectral range 0.6–1.6 µm. Quantum Electron. 23, 617–619 (1993).

    Article  ADS  Google Scholar 

  6. Tseng, S. M., Hsu, K. Y., Wei, H. S. & Chen, K. F. Analysis and experiment of thin metal-clad fiber polarizer with index overlay. IEEE Photon. Technol. Lett. 9, 628–630 (1997).

    Article  ADS  Google Scholar 

  7. Li, G. Y. & Xu, A. S. Analysis of the TE-pass or TM-pass metal-clad polarizer with a resonant buffer layer. J. Lightwave Technol. 26, 1234–1241 (2008).

    Article  ADS  Google Scholar 

  8. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  9. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  10. Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    Article  ADS  Google Scholar 

  11. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  12. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  13. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  14. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  15. Horing, N. J. M. Coupling of graphene and surface plasmons. Phys. Rev. B 80, 193401 (2009).

    Article  ADS  Google Scholar 

  16. Hanson, G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).

    Article  ADS  Google Scholar 

  17. Mishchenko, E. et al. Guided plasmons in graphene pn junctions. Phys. Rev. Lett. 104, 156806 (2010).

    Article  ADS  Google Scholar 

  18. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  19. Mikhailov, S. & Ziegler, K. New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007).

    Article  ADS  Google Scholar 

  20. Stern, F. Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546–548 (1967).

    Article  ADS  Google Scholar 

  21. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Article  ADS  Google Scholar 

  22. Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96, 256802 (2006).

    Article  ADS  Google Scholar 

  23. Maier, S. Plasmonics: Fundamentals and Applications 1st edn (Springer Verlag, 2007).

    Book  Google Scholar 

  24. Johnstone, W., Stewart, G., Hart, T. & Culshaw, B. Surface-plasmon polaritions in thin metal-films and their role in fiber optic polarizing devices. J. Lightwave Technol. 8, 538–544 (1990).

    Article  ADS  Google Scholar 

  25. Ohke, S., Umeda, T. & Cho, Y. TM-mode selective filter using leaky waveguide structure. Electron. Comm. Jap. II: Electron. 85, 9–15 (2002).

    Article  Google Scholar 

  26. Rollke, K. H. & Sohler, W. Metal-clad waveguide as cutoff polarizer for integrated-optics. IEEE J. Quantum Electron. 13, 141–145 (1977).

    Article  ADS  Google Scholar 

  27. Berini, P. Plasmon-polariton modes guided by a metal film of finite width. Opt. Lett. 24, 1011–1013 (1999).

    Article  ADS  Google Scholar 

  28. Hanson, G. W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104, 084314 (2008).

    Article  ADS  Google Scholar 

  29. Okamoto, K. Fundamentals of Optical Waveguides (Academic Press, 2006).

    Google Scholar 

  30. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NRF-CRP grant (‘Graphene Related Materials and Devices’, R-143-000-360-281). The authors thank R.J. Knize (United States Air Force Academy) for helpful discussions, B. Yan, T. Yu and Z.X. Shen (SPMS, NTU) for assistance with measurements at visible wavelengths, and X. Wu, L.M. Zhao and B. Lin (EEE, NTU) for assistance with measurements at near-infrared wavelengths. H.Z. acknowledges financial support from the Belgian Science Policy Office (BELSPO) Interuniversity Attraction Pole (IAP) programme (grant no. IAP-6/10) and experiment facility support from OPERA-photonique (Université libre de Bruxelles). The authors thank P. Kockaert, P. Emplit and M. Haelterman (Université libre de Bruxelles) for discussion and critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.P.L. supervised the project. K.P.L. and Q.B. planned the project. Q.B. and H.Z. conceived the original concept and performed most of the experiments. B.W. and Q.B. contributed to the numerical calculations. Z.N. contributed to measurements in the visible range. H.Z. and D.Y.T. contributed to the experiments in the NIR range. C.H.Y.X.L. and Y.W. contributed to graphene synthesis. K.P.L. and Q.B. analysed the data and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Q., Zhang, H., Wang, B. et al. Broadband graphene polarizer. Nature Photon 5, 411–415 (2011). https://doi.org/10.1038/nphoton.2011.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing