Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optofluidic microsystems for chemical and biological analysis

Abstract

Optofluidics — the synergistic integration of photonics and microfluidics — is a new analytical field that provides a number of unique characteristics for enhancing the sensing performance and simplifying the design of microsystems. This Review describes various optofluidic architectures developed over the past five years, emphasizes the mechanisms by which optofluidics enhances biological/chemical analytic capabilities, including sensing and the precise control of biological micro- and nanoparticles, and also highlights new research directions to which the field of optofluidics may lead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various optofluidic devices used in RI detection.
Figure 2: Optofluidic SERS techniques.
Figure 3: Optofluidic devices for nanoparticle trapping and manipulation.

Similar content being viewed by others

References

  1. Erickson, D., Sinton, D. & Psaltis, D. Optofluidics for energy applications. Nature Photon. 5, 583–590 10.1038/nphoton.2011.209 (2011).

    Article  ADS  Google Scholar 

  2. Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nature Photon. 5, 598–604 10.1038/nphoton.2011.163 (2011).

    Article  ADS  Google Scholar 

  3. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    ADS  Google Scholar 

  4. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nature Photon. 1, 106–114 (2007).

    ADS  Google Scholar 

  5. Hawkins, A. R. & Schmidt, H. (eds) Handbook of Optofluidics (CRC, 2010).

    Google Scholar 

  6. Fainman, Y., Lee, L., Psaltis, D. & Yang, C. (eds) Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).

    Google Scholar 

  7. Yin, D., Deamer, D. W., Schmidt, H., Barber, J. P. & Hawkins, A. R. Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 31, 2136–2138 (2006).

    ADS  Google Scholar 

  8. Eftekhari, F. et al. Nanoholes as nanochannels: Flow-through plasmonic sensing. Anal. Chem. 81, 4308–4311 (2009).

    Google Scholar 

  9. Huang, M., Yanik, A. A., Chang, T. & Altug, H. Sub-wavelength nanofluidics in photonic crystal sensors. Opt. Express 17, 24224–24233 (2009).

    ADS  Google Scholar 

  10. Guo, Y. et al. Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels. Appl. Phys. Lett. 98, 041104 (2011).

    ADS  Google Scholar 

  11. Galas, J. C., Peroz, C., Kou, Q. & Chen, Y. Microfluidic dye laser intracavity absorption. Appl. Phys. Lett. 89, 224101 (2006).

    ADS  Google Scholar 

  12. Sun, Y., Shopova, S. I., Wu, C.S., Arnold, S. & Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl Sci. Acad. USA 107, 16039–16042 (2010).

    ADS  Google Scholar 

  13. Sun, Y. & Fan, X. Highly selective single-nucleotide polymorphism detection with optofluidic ring resonator lasers. CLEO/QELS paper CWL6 (2011).

    Google Scholar 

  14. Wang, Z., Swinney, K. & Bornhop, D. J. Attomole sensitivity for unlabeled proteins and polypeptides with on-chip capillary electrophoresis and universal detection by interferometric backscatter. Electrophoresis 24, 865–873 (2003).

    Google Scholar 

  15. Zhu, H., White, I. M., Suter, J. D., Zourob, M. & Fan, X. Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal. Chem. 79, 930–937 (2007).

    Google Scholar 

  16. Shopova, S. I. et al. On-column micro gas chromatography detection with capillary-based optical ring resonators. Anal. Chem. 80, 2232–2238 (2008).

    Google Scholar 

  17. Sun, Y. et al. Rapid tandem-column micro-gas chromatography based on optofluidic ring resonators with multi-point on-column detection. Analyst 135, 165–171 (2010).

    ADS  Google Scholar 

  18. Lee, S. J. & Moskovits, M. Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett. 11, 145–150 (2011).

    ADS  Google Scholar 

  19. Erickson, D., Serey, X., Chen, Y.F. & Mandal, S. Nanomanipulation using near field photonics. Lab Chip 11, 995–1009 (2011).

    Google Scholar 

  20. Pang, L., Hwang, G. M., Slutsky, B. & Fainman, Y. Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl. Phys. Lett. 91, 123112 (2007).

    ADS  Google Scholar 

  21. Yang, J.C., Ji, J., Hogle, J. M. & Larson, D. N. Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes. Nano Lett. 8, 2718–2724 (2008).

    ADS  Google Scholar 

  22. Im, H., Lesuffleur, A., Lindquist, N. C. & Oh, S.H. Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal. Chem. 81, 2854–2859 (2009).

    Google Scholar 

  23. Yanik, A. A., Huang, M., Artar, A., Chang, T. & Altug, H. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 96, 021101 (2010).

    ADS  Google Scholar 

  24. Escobedo, C., Brolo, A. G., Gordon, R. & Sinton, D. Flow-through vs flow-over: Analysis of transport and binding in nanohole array plasmonic biosensors. Anal. Chem. 82, 10015–10020 (2010).

    Google Scholar 

  25. Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M. & Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004).

    ADS  Google Scholar 

  26. Lee, M. R. & Fauchet, P. M. Nanoscale microcavity sensor for single particle detection. Opt. Lett. 32, 3284–3286 (2007).

    ADS  Google Scholar 

  27. Lee, M. R. & Fauchet, P. M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15, 4530–4535 (2007).

    ADS  Google Scholar 

  28. Nunes, P. S., Mortensen, N. A., Kutter, J. P. & Mogensen, K. B. Photonic crystal resonator integrated in a microfluidic system. Opt. Lett. 33, 1623–1625 (2008).

    ADS  Google Scholar 

  29. Mandal, S., Goddard, J. M. & Erickson, D. A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 9, 2924–2932 (2009).

    Google Scholar 

  30. Rindorf, L. et al. Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14, 8224–8231 (2006).

    ADS  Google Scholar 

  31. Huy, M. C. P. et al. Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. Opt. Lett. 32, 2390–2392 (2007).

    ADS  Google Scholar 

  32. Rindorf, L. & Bang, O. Highly sensitive refractometer with a photoniccrystalfiber long-period grating. Opt. Lett. 33, 563–565 (2008).

    ADS  Google Scholar 

  33. He, Z., Zhu, Y. & Du, H. Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution. Appl. Phys. Lett. 92, 044105 (2008).

    ADS  Google Scholar 

  34. Wu, D. K. C., Kuhlmey, B. T. & Eggleton, B. J. Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009).

    ADS  Google Scholar 

  35. White, I. M., Oveys, H. & Fan, X. Liquid core optical ring resonator sensors. Opt. Lett. 31, 1319–1321 (2006).

    ADS  Google Scholar 

  36. Barrios, C. A. et al. Label-free optical biosensing with slot-waveguides. Opt. Lett. 33, 708–710 (2008).

    ADS  Google Scholar 

  37. Bernardi, A. et al. On-chip Si/SiOx microtube refractometer. Appl. Phys. Lett. 93, 094106 (2008).

    ADS  Google Scholar 

  38. Li, H. & Fan, X. Characterization of sensing capability of optofluidic ring resonator biosensors. Appl. Phys. Lett. 97, 011105 (2010).

    ADS  Google Scholar 

  39. Sumetsky, M., Dulashko, Y. & Windeler, R. S. Optical microbubble resonator. Opt. Lett. 35, 898–900 (2010).

    ADS  Google Scholar 

  40. Testa, G., Huang, Y., Sarro, P. M., Zeni, L. & Bernini, R. Integrated silicon optofluidic ring resonator. Appl. Phys. Lett. 97, 131110 (2010).

    ADS  Google Scholar 

  41. Grillet, C. et al. Compact tunable microfluidic interferometer. Opt. Express 12, 5440–5447 (2004).

    ADS  Google Scholar 

  42. Song, W. Z. et al. Determination of single living cell's dry/water mass using optofluidic chip. Appl. Phys. Lett. 91, 223902 (2007).

    ADS  Google Scholar 

  43. Song, W. Z. et al. Refractive index measurement of single living cells using on-chip Fabry–Pérot cavity. Appl. Phys. Lett. 89, 203901 (2006).

    ADS  Google Scholar 

  44. Shao, H., Wang, W., Lana, S. E. & Lear, K. L. Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes. IEEE Photon. Technol. Lett. 20, 493–495 (2008).

    ADS  Google Scholar 

  45. St-Gelais, R., Masson, J. & Peter, Y.A. All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems. Appl. Phys. Lett. 94, 243905 (2009).

    ADS  Google Scholar 

  46. Shumaker-Parry, J. S. & Campbell, C. T. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 76, 907–917 (2004).

    Google Scholar 

  47. Ozkumur, E. et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications. Proc. Natl Sci. Acad. USA 105, 7988–7992 (2008).

    ADS  Google Scholar 

  48. Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002).

    ADS  Google Scholar 

  49. Zhu, H., White, I. H., Suter, J. D., Zourob, M. & Fan, X. Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133, 356–360 (2008).

    ADS  Google Scholar 

  50. Ouyang, H., Striemer, C. C. & Fauchet, P. M. Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl. Phys. Lett. 88, 163108 (2006).

    ADS  Google Scholar 

  51. Orosco, M. M., Pacholski, C. & Sailor, M. J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nature Nanotechnol. 4, 255–258 (2009).

    ADS  Google Scholar 

  52. Manor, R. et al. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens. J. 3, 687–692 (2003).

    ADS  Google Scholar 

  53. Cho, S. H., Godin, J. & Lo, Y.H. Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon. Technol. Lett. 21, 1057–1059 (2009).

    ADS  Google Scholar 

  54. Korampally, V. et al. Development of a miniaturized liquid-core waveguide system with nanoporous dielectric cladding: A potential biosensing platform. IEEE Sens. J. 9, 1711–1718 (2009).

    ADS  Google Scholar 

  55. Gopalakrishnan, N. et al. UV patterned nanoporous solid-liquid core waveguides. Opt. Express 18, 12903–12908 (2010).

    ADS  Google Scholar 

  56. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    ADS  Google Scholar 

  57. Ganesh, N., Zhang, W., Mathias, P. C. & Cunningham, B. T. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nature Nanotechnol. 2, 515–520 (2007).

    Google Scholar 

  58. Smolka, S., Barth, M. & Benson, O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Opt. Express 15, 12783–12791 (2007).

    ADS  Google Scholar 

  59. Coscelli, E. et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers. IEEE J. Sel. Top. Quant. Electron. 16, 967–972 (2010).

    ADS  Google Scholar 

  60. Liu, Y., Wang, S., Park, Y.S., Yin, X. & Zhang, X. Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity. Opt. Express 18, 25029–25034 (2010).

    ADS  Google Scholar 

  61. Xu, Q., Almeida, V. R., Panepucci, R. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size lowrefractiveindex material. Opt. Lett. 29, 1626–1628 (2004).

    ADS  Google Scholar 

  62. Rudenko, M. I. et al. Ultrasensitive phage analysis using fluorescence correlation spectroscopy on an optofluidic chip. Biosens. Bioelectron. 24, 3258–3263 (2009).

    Google Scholar 

  63. Chen, A. et al. Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip. Lab Chip 11, 1502–1506 (2011).

    ADS  Google Scholar 

  64. Holmes, M. R. et al. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides. J. Micro-Nanolith. MEM 9, 023004 (2010).

    Google Scholar 

  65. Kuhn, S. et al. Loss-based optical trap for on-chip particle analysis. Lab Chip 9, 2212–2216 (2009).

    Google Scholar 

  66. Kuhn, S., Phillips, B. S., Lunt, E. J., Hawkins, A. R. & Schmidt, H. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. Lab Chip 10, 189–194 (2010).

    Google Scholar 

  67. Li, Z. & Psaltis, D. Optofluidic dye lasers. Microfluid. Nanofluid. 4, 145–158 (2007).

    Google Scholar 

  68. Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978).

    ADS  Google Scholar 

  69. Michaels, A. M., Nirmal, M. & Brus, L. E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    Google Scholar 

  70. Saikin, S. K., Chu, Y., Rappoport, D., Crozier, K. B. & Aspuru-Guzik, A. Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. J. Phys. Chem. Lett. 1, 2740–2746 (2010).

    Google Scholar 

  71. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Google Scholar 

  72. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    ADS  Google Scholar 

  73. Jeanmaire, D. L. & Duyne, R. P. V. Surface Raman spectroelectrochemistry part I: Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Google Scholar 

  74. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    Google Scholar 

  75. Yang, X. et al. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J. Opt. A 27, 977–985 (2010).

    Google Scholar 

  76. Khaing Oo, M. K., Han, Y., Kanka, J., Sukhishvili, S. & Du, H. Structure fits the purpose: Photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt. Lett. 35, 466–469 (2010).

    ADS  Google Scholar 

  77. Measor, P. et al. On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007).

    ADS  Google Scholar 

  78. Wang, M., Jing, N., Chou, I.H., Cote, G. L. & Kameoka, J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7, 630–632 (2007).

    Google Scholar 

  79. Park, S.M., Huh, Y. S., Craighead, H. G. & Erickson, D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl Sci. Acad. USA 106, 15549–15554 (2009).

    ADS  Google Scholar 

  80. Liu, J., White, I. & DeVoe, D. L. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal. Chem. 83, 2119–2124 (2011).

    Google Scholar 

  81. Huh, Y. S., Chung, A. J., Cordovez, B. & Erickson, D. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9, 433–439 (2009).

    Google Scholar 

  82. Cho, H., Lee, B., Liu, G. L., Agarwal, A. & Lee, L. P. Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9, 3360–3363 (2009).

    Google Scholar 

  83. White, I. M., Gohring, J. & Fan, X. SERS-based detection in an optofluidic ring resonator platform. Opt. Express 15, 17433–17442 (2007).

    ADS  Google Scholar 

  84. Kim, S.-M., Zhang, W. & Cunningham, B. T. Photonic crystals with SiO2–Ag 'post-cap' nanostructure coatings for surface enhanced Raman spectroscopy. Appl. Phys. Lett. 93, 143112 (2008).

    ADS  Google Scholar 

  85. Choi, I., Huh, Y. S. & Erickson, D. Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Lab Chip 11, 632–638 (2011).

    Google Scholar 

  86. Walter, A., Marz, A., Schumacher, W., Rosch, P. & Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11, 1013–1021 (2011).

    Google Scholar 

  87. Eriksson, E. et al. Optical manipulation and microfluidics for studies of single cell dynamics. J. Opt. A 9, S113–S121 (2007).

    ADS  Google Scholar 

  88. Wang, T.H., Peng, Y., Zhang, C., Wong, P. K. & Ho, C.M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127, 5354–5359 (2005).

    Google Scholar 

  89. Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Scannable plasmonic trapping using a gold stripe. Nano Lett. 10, 3506–3511 (2010).

    ADS  Google Scholar 

  90. Mandal, S. & Erickson, D. Nanoscale optofluidic sensor arrays. Opt. Express 16, 1623–1631 (2008).

    ADS  Google Scholar 

  91. Arnold, S. et al. Whispering gallery mode carousel: A photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17, 6230–6238 (2009).

    ADS  Google Scholar 

  92. Lin, S., Schonbrun, E. & Crozier, K. Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408–2411 (2010).

    ADS  Google Scholar 

  93. Applegate, R. W., Squier, J., Vestad, T., Oakey, J. & Marr, D. W. M. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt. Express 12, 4390–4398 (2004).

    ADS  Google Scholar 

  94. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    ADS  Google Scholar 

  95. Cui, X. et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Sci. Acad. USA 105, 10670–10675 (2008).

    ADS  Google Scholar 

  96. Bishara, W., Su, T.W., Coskun, A. F. & Ozcan, A. Lensfree on-chip microscopy over a wide fieldofview using pixel super-resolution. Opt. Express 18, 11182–11191 (2010).

    ADS  Google Scholar 

  97. Villatoro, J. et al. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 17, 1447–1453 (2009).

    ADS  Google Scholar 

  98. Cubillas, A. M. et al. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15, 17570–17576 (2007).

    ADS  Google Scholar 

  99. Zhao, B. S., Koo, Y.M. & Chung, D. S. Separations based on the mechanical forces of light. Anal. Chim. Acta 556, 97–103 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (ECCS-1045621 and CBET-1037097) and the National Institute of Biomedical Imaging and Bioengineering (5K25EB006011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Fan or Ian M. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., White, I. Optofluidic microsystems for chemical and biological analysis. Nature Photon 5, 591–597 (2011). https://doi.org/10.1038/nphoton.2011.206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing