Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergence of colloidal quantum-dot light-emitting technologies

Abstract

Since their inception 18 years ago, electrically driven colloidal quantum-dot light-emitting devices (QD-LEDs) have increased in external quantum efficiency from less than 0.01% to around 18%. The high luminescence efficiency and uniquely size-tunable colour of solution-processable semiconducting colloidal QDs highlight the potential of QD-LEDs for use in energy-efficient, high-colour-quality thin-film display and solid-state lighting applications. Indeed, last year saw the first demonstrations of electrically driven full-colour QD-LED displays, which foreshadow QD technologies that will transcend the optically excited QD-enhanced lighting products already available today. We here discuss the key advantages of using QDs as luminophores in LEDs and outline the operating mechanisms of four types of QD-LED. State-of-the-art visible-wavelength LEDs and the promise of near-infrared and heavy-metal-free devices are also highlighted. As QD-LED efficiencies approach those of molecular organic LEDs, we identify the key scientific and technological challenges facing QD-LED commercialization and offer our outlook for on-going strategies to overcome these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunable and pure colour light emission from colloidal QDs.
Figure 2: Optical advantages of colloidal QDs for display and SSL applications.
Figure 3: Progression of orange/red-emitting QD-LED performance over time in terms of peak EQE and peak brightness.
Figure 4: QD excitation mechanisms.
Figure 5: Type-II QD-LED.
Figure 6: State-of-the-art QD-LEDs and their use in large-area devices.

Similar content being viewed by others

References

  1. Colvin, V. L., Schlamp, M. C., Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    ADS  Google Scholar 

  2. Coe, S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    ADS  Google Scholar 

  3. Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

    ADS  Google Scholar 

  4. Stouwdam, J. W. & Janssen, R. A. J. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 18, 1889–1894 (2008).

    Google Scholar 

  5. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Google Scholar 

  6. Pal, B. N. et al. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Func. Mater. 22, 1741–1748 (2012).

    Google Scholar 

  7. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    ADS  Google Scholar 

  8. Koh, W. K., Saudari, S. R., Fafarman, A. T., Kagan, C. R. & Murray, C. B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Lett. 11, 4764–4767 (2011).

    ADS  Google Scholar 

  9. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    ADS  Google Scholar 

  10. Oliver, J. Quantum dots: global market growth and future commercial prospects. BCC Research paper NAN027C (2011).

  11. www.displaysearch.com.

  12. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).

    ADS  Google Scholar 

  13. Hollingsworth, J. A. & Klimov, V. I. Nanocrystal Quantum Dots 2nd edn, Ch. 1 (CRC, 2010).

    Google Scholar 

  14. Klar, B. T. A., Franzl, T., Rogach, A. L. & Feldmann, J. Super-efficient exciton funneling in layer-by-layer semiconductor nanocrystal structures. Adv. Mater. 17, 769–773 (2005).

    Google Scholar 

  15. Grundmann, M. The present status of quantum dot lasers. Physica E 5, 167–184 (2000).

    ADS  Google Scholar 

  16. Coe-Sullivan, S. Quantum dot developments. Nature Photon. 3, 315–316 (2009).

    ADS  Google Scholar 

  17. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Google Scholar 

  18. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000).

    ADS  Google Scholar 

  19. Sanderson, K. Quantum dots go large. Nature 459, 760–761 (2009).

    Google Scholar 

  20. Norris, D. J., Bawendi, M. G. & Brus, L. E. Molecular Electronics: A “Chemistry for the 21st Century” Monograph Ch. 9 (Blackwell Science, 1997).

    Google Scholar 

  21. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulović, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).

    ADS  Google Scholar 

  22. Niu, Y. H. et al. Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer. Adv. Mater. 19, 3371–3376 (2007).

    Google Scholar 

  23. Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photon. 5, 543–548 (2011).

    ADS  Google Scholar 

  24. Sun, Q. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photon. 1, 717–722 (2007).

    ADS  Google Scholar 

  25. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    ADS  Google Scholar 

  26. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 7, 369–373 (2012).

    ADS  Google Scholar 

  27. Konstantatos, G., Huang, C., Levina, L., Lu, Z. & Sargent, E. H. Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Func. Mater. 15, 1865–1869 (2005).

    Google Scholar 

  28. Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G. & Jensen, K. F. Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102–1105 (2000).

    Google Scholar 

  29. Wood, V. & Bulović, V. Colloidal quantum dot light-emitting devices. Nano Rev. 1, 1–7 (2010).

    Google Scholar 

  30. Hines, M. A. & Guyot-sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Google Scholar 

  31. Dabbousi, B. O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Google Scholar 

  32. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Google Scholar 

  33. Pietryga, J. M. et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 4879–4885 (2008).

    Google Scholar 

  34. Chang, T. et al. High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films. Synth. Metals 148, 257–261 (2005).

    Google Scholar 

  35. Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    ADS  Google Scholar 

  36. Kagan, C., Murray, C. & Bawendi, M. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).

    ADS  Google Scholar 

  37. Xu, F. et al. Efficient exciton funneling in cascaded PbS quantum dot superstructures. ACS Nano 5, 9950–9957 (2011).

    Google Scholar 

  38. Baldo, M. A. & Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    ADS  Google Scholar 

  39. Efros, A. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    ADS  Google Scholar 

  40. Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Func. Mater. 15, 1117–1124 (2005).

    Google Scholar 

  41. Zhu, T. et al. Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Appl. Phys. Lett. 92, 023111 (2008).

    ADS  Google Scholar 

  42. Haverinen, H. M., Myllylä, R. A. & Jabbour, G. E. Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 94, 073108 (2009).

    ADS  Google Scholar 

  43. Wood, V. et al. Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv. Mater. 21, 2151–2155 (2009).

    Google Scholar 

  44. Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    ADS  Google Scholar 

  45. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

    ADS  Google Scholar 

  46. Cho, K.-S. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photon. 3, 341–345 (2009).

    ADS  Google Scholar 

  47. Ma, X., Xu, F., Benavides, J. & Cloutier, S. G. High performance hybrid near-infrared LEDs using benzenedithiol cross-linked PbS colloidal nanocrystals. Org. Electron. 13, 525–531 (2012).

    Google Scholar 

  48. Kwak, J. et al. Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes. Adv. Mater. 21, 5022–5026 (2009).

    Google Scholar 

  49. Liu, Y. et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960–1969 (2010).

    ADS  Google Scholar 

  50. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    ADS  Google Scholar 

  51. Tang, Z., Ozturk, B., Wang, Y. & Kotov, N. A. Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J. Phys. Chem. B 108, 6927–6931 (2004).

    Google Scholar 

  52. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    ADS  Google Scholar 

  53. van Sark, W. G. J. H. M., Frederix, P. L. T. M., Bol, A. A., Gerritsen, H. C. & Meijerink, A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3, 871–879 (2002).

    Google Scholar 

  54. Koberling, F. & Mews, A. B. Oxygen-induced blinking of single CdSe nanocrystals. Adv. Mater. 13, 672–676 (2001).

    Google Scholar 

  55. Wang, X., Zhang, J., Nazzal, A. & Xiao, M. Photo-oxidation-enhanced coupling in densely packed CdSe quantum-dot films. Appl. Phys. Lett. 83, 162–164 (2003).

    ADS  Google Scholar 

  56. Tice, D. B., Frederick, M. T., Chang, R. P. H. & Weiss, E. A. Electron migration limits the rate of photobrightening in thin films of CdSe quantum dots in a dry N2 (g) atmosphere. J. Phys. Chem. C 115, 3654–3662 (2011).

    Google Scholar 

  57. Jones, M., Nedeljkovic, J., Ellingson, R. J., Nozik, A. J. & Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 107, 11346–11352 (2003).

    Google Scholar 

  58. Cordero, S. R., Carson, P. J., Estabrook, R. A., Strouse, G. F. & Buratto, S. K. Photo-activated luminescence of CdSe quantum dot monolayers. J. Phys. Chem. B 104, 12137–12142 (2000).

    Google Scholar 

  59. Oda, M. et al. Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: adsorption and desorption effects of polar molecules on nanocrystal surfaces. J. Lumin. 119120, 570–575 (2006).

    Google Scholar 

  60. Uematsu, T., Maenosono, S. & Yamaguchi, Y. Photoinduced fluorescence enhancement in mono- and multilayer films of CdSe/ZnS quantum dots: dependence on intensity and wavelength of excitation light. J. Phys. Chem. B 109, 8613–8618 (2005).

    Google Scholar 

  61. Chen, Y. et al. 'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Google Scholar 

  62. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nature Mater. 7, 659–664 (2008).

    ADS  Google Scholar 

  63. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Google Scholar 

  64. Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    ADS  Google Scholar 

  65. Spinicelli, P. et al. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics. ChemPhysChem 10, 879–882 (2009).

    Google Scholar 

  66. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    ADS  Google Scholar 

  67. Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    Google Scholar 

  68. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nature Meth. 5, 763–775 (2008).

    Google Scholar 

  69. Meerheim, R. et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys. 104, 014510 (2008).

    ADS  Google Scholar 

  70. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. & Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

    ADS  Google Scholar 

  71. Mattoussi, H. et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83, 7965–7974 (1998).

    ADS  Google Scholar 

  72. Schlamp, M. C., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    ADS  Google Scholar 

  73. Chang, T.-W. F. et al. Efficient excitation transfer from polymer to nanocrystals. Appl. Phys. Lett. 84, 4295–4297 (2004).

    ADS  Google Scholar 

  74. Panzer, M. J. et al. Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films. Nano Lett. 10, 2421–2426 (2010).

    ADS  Google Scholar 

  75. Achermann, M., Petruska, M. A, Koleske, D. D., Crawford, M. H. & Klimov, V. I. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396–1400 (2006).

    ADS  Google Scholar 

  76. Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    ADS  Google Scholar 

  77. Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs. Angew. Chem. 45, 5796–5799 (2006).

    Google Scholar 

  78. Anikeeva, P. O., Madigan, C. F., Halpert, J. E., Bawendi, M. G. & Bulović, V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys. Rev. B 78, 085434 (2008).

    ADS  Google Scholar 

  79. Rizzo, A. et al. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv. Mater. 20, 1886–1891 (2008).

    Google Scholar 

  80. Empedocles, S. A. & Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    ADS  Google Scholar 

  81. Woo, W.-K. et al. Reversible charging of CdSe nanocrystals in a simple solid-state device. Adv. Mater. 14, 1068–1071 (2002).

    Google Scholar 

  82. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulović, V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Lett. 7, 2196–2200 (2007).

    ADS  Google Scholar 

  83. Li, Y. Q., Rizzo, A., Cingolani, R. & Gigli, G. Bright white-light-emitting device from ternary nanocrystal composites. Adv. Mater. 18, 2545–2548 (2006).

    Google Scholar 

  84. Jing, P. et al. Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes. J. Appl. Phys. 105, 044313 (2009).

    ADS  Google Scholar 

  85. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    ADS  Google Scholar 

  86. Burrows, P. E., Bulović, V., Forrest, S. R., Sapochak, L. S. & Mccarty, D. M. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 65, 2922–2924 (1994).

    ADS  Google Scholar 

  87. Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photon. 2, 247–250 (2008).

    Google Scholar 

  88. Wood, V. et al. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3, 3581–3586 (2009).

    Google Scholar 

  89. Cho, S. H. et al. High performance AC electroluminescence from colloidal quantum dot hybrids. Adv. Mater. 24, 4540–4546 (2012).

    Google Scholar 

  90. Bozyigit, D., Wood, V., Shirasaki, Y. & Bulović, V. Study of field driven electroluminescence in colloidal quantum dot solids. J. Appl. Phys. 111, 113701 (2012).

    ADS  Google Scholar 

  91. Caruge, J.-M., Halpert, J. E., Bulović, V. & Bawendi, M. G. NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett. 6, 2991–2994 (2006).

    ADS  Google Scholar 

  92. Coe-Sullivan, S. Quantum-dot light-emitting diodes for near-to-eye and direct-view display applications, SID Symp. Dig. Tech. Papers. 42, 135–138 (2011).

    Google Scholar 

  93. Borek, C. et al. Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. Angew. Chem. 46, 1109–1112 (2007).

    Google Scholar 

  94. Sommer, J. R. et al. Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho-2,3-porphyrin)platinum(II). ACS Appl. Mater. Interf. 1, 274–278 (2009).

    Google Scholar 

  95. Qian, G. et al. Simple and efficient near-infrared organic chromophores for light-emitting diodes with single electroluminescent emission above 1000 nm. Adv. Mater. 21, 111–116 (2009).

    Google Scholar 

  96. Who Goes There: Friend or Foe? US Congress, Office of Technology Assessment OTA-ISC-537 (1993).

  97. Lim, Y. T., Kim, S., Nakayama, A., Stott, N. E., Bawendi, M. G., Frangioni, J. V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2, 50–64 (2003).

    Google Scholar 

  98. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006).

    ADS  Google Scholar 

  99. Sargent, E. H. Infrared quantum dots. Adv. Mater. 17, 515–522 (2005).

    Google Scholar 

  100. Bourdakos, K. N., Dissanayake, D. M. N. M., Lutz, T., Silva, S. R. P. & Curry, R. J. Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device. Appl. Phys. Lett. 92, 153311 (2008).

    ADS  Google Scholar 

  101. Steckel, J. S., Coe-Sullivan, S., Bulović, V. & Bawendi, M. G. 1.3μm to 1.55μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862–1866 (2003).

    Google Scholar 

  102. Choudhury, K. R., Song, D. W. & So, F. Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices. Org. Electron. 11, 23–28 (2010).

    Google Scholar 

  103. Hoogland, S. et al. Megahertz-frequency large-area optical modulators at 1.55 μm based on solution-cast colloidal quantum dots. Opt. Express 16, 6683–6691 (2008).

    ADS  Google Scholar 

  104. Rogach, A. L., Eychmüller, A., Hickey, S. G. & Kershaw, S. V. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small 3, 536–557 (2007).

    Google Scholar 

  105. Kershaw, S. V., Harrison, M., Rogach, A. L. & Kornowski, A. Development of IR-emitting colloidal II–VI quantum-dot materials. IEEE J. Sel. Top. Quant. Electron. 6, 534–543 (2000).

    ADS  Google Scholar 

  106. Cheng, K.-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952–1956 (2011).

    ADS  Google Scholar 

  107. Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    ADS  Google Scholar 

  108. Bakueva, L. et al. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895–2897 (2003).

    ADS  Google Scholar 

  109. Solomeshch, O. et al. Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. J. Appl. Phys. 98, 074310 (2005).

    ADS  Google Scholar 

  110. Cheng, K.-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. Nano Lett. 10, 1154–1157 (2010).

    ADS  Google Scholar 

  111. Koktysh, D. S. et al. Near-infrared electroluminescence from HgTe nanocrystals. ChemPhysChem 5, 1435–1438 (2004).

    Google Scholar 

  112. O'Connor, E. et al. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays. Appl. Phys. Lett. 86, 201114 (2005).

    ADS  Google Scholar 

  113. Zhang, Y. et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett. 11, 329–332 (2011).

    ADS  Google Scholar 

  114. Tan, Z. et al. Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots. Adv. Mater. 23, 3553–3558 (2011).

    Google Scholar 

  115. Kovalev, D. et al. Breakdown of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett. 81, 2803–2806 (1998).

    ADS  Google Scholar 

  116. Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

    ADS  Google Scholar 

  117. Ligman, R. K., Mangolini, L., Kortshagen, U. R. & Campbell, S. A. Electroluminescence from surface oxidized silicon nanoparticles dispersed within a polymer matrix. Appl. Phys. Lett. 90, 061116 (2007).

    ADS  Google Scholar 

  118. Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

    ADS  Google Scholar 

  119. Stouwdam, J. W. & Janssen, R. A. J. Electroluminescent Cu-doped CdS quantum dots. Adv. Mater. 21, 2916–2920 (2009).

    Google Scholar 

  120. Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    ADS  Google Scholar 

  121. Huang, H., Dorn, A., Nair, G. P., Bulović, V. & Bawendi, M. G. Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors. Nano Lett. 7, 3781–3786 (2007).

    ADS  Google Scholar 

  122. Wang, Z.-B., Zhang, H.-C. & Zhang, J.-Y. Quantum-confined Stark effect in ensemble of colloidal semiconductor quantum dots. Chinese Phys. Lett. 27, 127803 (2010).

    ADS  Google Scholar 

  123. Sun, L. et al. PbS quantum dot photoluminescence quenching induced by an applied bias. Conf. Lasers and Electro-Optics paper CThS6 (2008).

  124. Shik, A., Konstantatos, G., Sargent, E. H. & Ruda, H. E. Exciton capture by nanocrystals in a polymer matrix. J. Appl. Phys. 94, 4066–4069 (2003).

    ADS  Google Scholar 

  125. Shirasaki, Y., Supran, G. J., Tisdale, W. A. & Bulović, V. Investigation of the efficiency droop in hybrid organic-inorganic colloidal quantum-dot LEDs at high current densities. 7th Int. Conf. Quantum Dots (2012).

  126. Patel, N. K., Cinà, S. & Burroughes, J. H. High-efficiency organic light-emitting diodes. IEEE J. Sel. Top. Quant. Electron. 8, 346–361 (2002).

    ADS  Google Scholar 

  127. Saxena, K., Jain, V. K. & Mehta, D. S. A review on the light extraction techniques in organic electroluminescent devices. Opt. Mater. 32, 221–233 (2009).

    ADS  Google Scholar 

  128. Hobson, B. P. A., Wedge, S., Wasey, J. A. E., Sage, I. & Barnes, W. L. Surface plasmon mediated emission from organic light-emitting diodes. Adv. Mater. 14, 1393–1396 (2002).

    Google Scholar 

  129. Lu, M.-H. & Sturm, J. C. Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J. Appl. Phys. 91, 595–604 (2002).

    ADS  Google Scholar 

  130. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010).

    ADS  Google Scholar 

  131. Pimputkar, S., Speck, J. S., Denbaars, S. P. & Nakamura, S. Prospects for LED lighting. Nature Photon. 3, 180–182 (2009).

    ADS  Google Scholar 

  132. Shirasaki, Y., Wood, V., Tischler, Y. R., Supran, G. J. & Bulović, V. Resonant cavity colloidal quantum dot LEDs. 2011 Conf. Lasers and Electro-Optics (2011).

  133. Chen, K.-J. et al. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv. Func. Mater. http://dx.doi.org/doi:10.1002/adfm.201200765 (2012).

  134. Hwang, E., Smolyaninov, I. I. & Davis, C. C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. Nano Lett. 10, 813–820 (2010).

    ADS  Google Scholar 

  135. Zhang, Y. Q. & Cao, X. A. Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules. Appl. Phys. Lett. 97, 253115 (2010).

    ADS  Google Scholar 

  136. Bae, W. K. et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 10, 2368–2373 (2010).

    ADS  Google Scholar 

  137. Solomeshch, O. et al. Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. J. Appl. Phys. 98, 074310 (2005).

    ADS  Google Scholar 

  138. Meerheim, R. et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys. 104, 014510 (2008).

    ADS  Google Scholar 

  139. Aziz, H. & Popovic, Z. D. Degradation phenomena in small-molecule organic light-emitting devices. Chem. Mater. 16, 4522–4532 (2004).

    Google Scholar 

  140. Coe-Sullivan, S. Nanotechnology for displays: a potential breakthrough for OLED displays and LCDs. SID Display Week 2012 (2012).

  141. Rogach, A. L. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47, 6538–6549 (2008).

    Google Scholar 

  142. So, F. & Kondakov, D. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 22, 3762–3777 (2010).

    Google Scholar 

  143. Pal, B. N. et al. 'Giant' CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2012).

    ADS  Google Scholar 

  144. Kalowekamo, J. & Baker, E. Estimating the manufacturing cost of purely organic solar cells. Sol. Energ. 83, 1224–1231 (2009).

    ADS  Google Scholar 

  145. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004).

    ADS  Google Scholar 

  146. Shiang, J. J., Kadavanich, A. V, Grubbs, R. K. & Alivisatos, A. P. Symmetry of annealed wurtzite CdSe nanocrystals: assignment to the C3v point group. J. Phys. Chem. 99, 17417–17422 (1995).

    Google Scholar 

  147. Tang, C. W., VanSlyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989).

    ADS  Google Scholar 

  148. O'Brien, D. F., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Improved energy transfer in electrophosphorescent devices. Appl. Phys. Lett. 74, 442–444 (1999).

    ADS  Google Scholar 

  149. Tsuzuki, T. & Tokito, S. Highly efficient and low-voltage phosphorescent organic light-emitting diodes using an iridium complex as the host material. Adv. Mater. 19, 276–280 (2007).

    Google Scholar 

  150. Kim, D. H. et al. Highly efficient red phosphorescent dopants in organic light-emitting devices. Adv. Mater. 23, 2721–2726 (2011).

    Google Scholar 

  151. Chang, Y.-L. et al. Enhancing the efficiency of simplified red phosphorescent organic light emitting diodes by exciton harvesting. Org. Electron. 13, 925–931 (2012).

    Google Scholar 

  152. Bendall, J. S. et al. Layer-by-layer all-inorganic quantum-dot-based LEDs: a simple procedure with robust performance. Adv. Func. Mater. 20, 3298–3302 (2010).

    Google Scholar 

  153. Hamada, Y., Kanno, H., Tsujioka, T., Takahashi, H. & Usuki, T. Red organic light-emitting diodes using an emitting assist dopant. Appl. Phys. Lett. 75, 1682–1684 (1999).

    ADS  Google Scholar 

  154. Chen, B. et al. Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials. J. Phys. D 34, 30–35 (2001).

    ADS  Google Scholar 

  155. Leung, M.-K. et al. 6-N,N-diphenylaminobenzofuran-derived pyran containing fluorescent dyes: a new class of high-brightness red-light-emitting dopants for OLED. Org. Lett. 8, 2623–2626 (2006).

    Google Scholar 

  156. Coe-Sullivan, S. OECD/NNI Symp., presenting work from AFOSR grant number FA9550-07-C-0056 (2012).

  157. Chen, J. A High-Efficiency Wide-Color-Gamut Solid-State Backlight System for LCDs Using Quantum-Dot Enhancement Film, SID Display Week 2012 (2012).

  158. Supran, G. J. S. et al. High Efficiency and Brightness Near-Infrared Quantum-Dot LEDs. US patent application no. 61/735,344 (2012).

Download references

Acknowledgements

This Review is based on work supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bulović.

Ethics declarations

Competing interests

V.B. is a Founder of and Scientific Advisor for QD Vision, and M.G.B. is a Scientific Advisor for QD Vision.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirasaki, Y., Supran, G., Bawendi, M. et al. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photon 7, 13–23 (2013). https://doi.org/10.1038/nphoton.2012.328

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing