Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics

Abstract

Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silicon nitride nanowires and Hydex waveguides.
Figure 2: Integrated optical-parametric-oscillator multiple-wavelength sources in Hydex and SiN ring resonators.
Figure 3: Advanced frequency combs in SiN ring resonators.
Figure 4: Coherence and frequency comb formation dynamics.
Figure 5: Microresonator-based mode-locked fibre loop laser.
Figure 6: Phase and amplitude measurement of ultrafast optical pulses using spectral phase interferometry for direct electric-field reconstruction (SPIDER).

Similar content being viewed by others

References

  1. Eggleton, B. J., Moss, D. J. & Radic, S. in Optical Fiber Telecommunications V: Components and Sub-systems (eds Kaminow, I. P., Li, T. & Willner, A. E.) Ch. 20, 759–828 (Academic, 2008).

    Google Scholar 

  2. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  3. Ji, H. et al. 1.28-Tb/s Demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon. Tech. Lett. 22, 1762–1764 (2010).

    Article  ADS  Google Scholar 

  4. Galili, M. et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing Opt. Express 17, 2182–2187 (2009).

    Article  ADS  Google Scholar 

  5. Foster, M. A. et al. Broad-band optical parametric gain on a silicon chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  6. Rong, H. et al. A cascaded silicon Raman laser. Nature Photon. 2, 170–174 (2008).

    Article  ADS  Google Scholar 

  7. Mathlouthi, W., Rong, H. & Paniccia, M. Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. Opt. Express 16, 16735–16745 (2008).

    Article  ADS  Google Scholar 

  8. Li, F. et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt. Express 19, 20364–20371 (2011).

    Article  ADS  Google Scholar 

  9. Salem, R. et al. Signal regeneration using low-power four-wave mixing on a silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  10. Ta'eed, V. G. et al. Integrated all-optical pulse regeneration in chalcogenide waveguides. Opt. Lett. 30, 2900–2902 (2005).

    Article  ADS  Google Scholar 

  11. Pelusi, M. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon. 3, 139–143 (2009).

    Article  ADS  Google Scholar 

  12. Corcoran, B. et al. Silicon nanowire based radio-frequency spectrum analyser. Opt. Express 18, 20190–20200 (2010).

    Article  ADS  Google Scholar 

  13. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  14. Pasquazi, A. et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nature Photon. 5, 618–623 (2011).

    Article  ADS  Google Scholar 

  15. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3, 765 (2012).

    Article  ADS  Google Scholar 

  16. Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012).

    Article  ADS  Google Scholar 

  17. Slavík, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photon. 4, 690–695 (2010).

    Article  ADS  Google Scholar 

  18. Winzer, P. Beyond 100G Ethernet. IEEE Commun. Mag. 48, 26–30 (2010).

    Article  Google Scholar 

  19. Essiambre, R., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. of Lightwave Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  20. Won, R. Integrating silicon photonics. Nature Photon. 4, 498–499 (2010).

    Article  Google Scholar 

  21. Baehr-Jones, T. et al. Myths and rumours of silicon photonics. Nature Photon. 6, 206–208 (2012).

    Article  ADS  Google Scholar 

  22. Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nature Photon. 4, 492–494 (2010).

    Article  ADS  Google Scholar 

  23. Jalali, B. Nonlinear optics in the mid-infrared. Nature Photon. 4, 506–508 (2010).

    Article  ADS  Google Scholar 

  24. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  25. Alduino, A. & Paniccia, M. Interconnects: Wiring electronics with light. Nature Photon. 1, 153–155 (2007).

    Article  ADS  Google Scholar 

  26. Selvaraja, S. K. et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. of Lightwave Technol. 27, 4076–4083 (2009).

    Article  ADS  Google Scholar 

  27. Dumon, P., Bogaerts, W., Baets, R., Fedeli, J.-M. & Fulbert, L. Towards foundry approach for silicon photonics: Silicon photonics platform ePIXfab. IEEE Electron. Lett. 45, 581–582 (2009).

    Article  Google Scholar 

  28. Bogaerts, W. et al. Silicon microring resonators. Las. Photon. Rev. 6, 47–73 (2012).

    Article  ADS  Google Scholar 

  29. Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

    Article  Google Scholar 

  30. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  31. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  32. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  33. Jalali, B., Solli, D. R. & Gupta, S. Silicon's time lens. Nature Photon. 3, 8–10 (2009).

    Article  ADS  Google Scholar 

  34. Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  ADS  Google Scholar 

  35. Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  ADS  Google Scholar 

  36. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  37. Kuyken, B. et al. 50 dB parametric on-chip gain in silicon photonic wires. Opt. Lett. 36, 4401–4403 (2011).

    Article  ADS  Google Scholar 

  38. Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    Article  ADS  Google Scholar 

  39. Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

    Article  ADS  Google Scholar 

  40. Grom, G. F. et al. Ordering and self-organization in nanocrystalline silicon. Nature 407, 358–361 (2000).

    Article  ADS  Google Scholar 

  41. Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996).

    Article  ADS  Google Scholar 

  42. Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 18, 14107 (2010).

    Article  ADS  Google Scholar 

  43. Liang, T. K. & Tsang, H. K. Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides. IEEE J. Selected Topics in Quant. Electron. 10, 1149–1153 (2004).

    Article  ADS  Google Scholar 

  44. Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268 (2004).

    Article  ADS  Google Scholar 

  45. Gholami, F. et al. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett. 99, 081102 (2011).

    Article  ADS  Google Scholar 

  46. Lin, Q. et al. Dispersion of silicon nonlinearities in the near infrared region. Appl. Phys. Lett. 91, 021111 (2007).

    Article  ADS  Google Scholar 

  47. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

    Article  ADS  Google Scholar 

  48. Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

    Article  ADS  Google Scholar 

  49. Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    Article  ADS  Google Scholar 

  50. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).

    Article  ADS  Google Scholar 

  51. Aitchison, J. S., Hutchings, D. C., Kang, J. U., Stegeman, G. I. & Villeneuve, A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. of Quant. Electron. 33, 341–348 (1997).

    Article  ADS  Google Scholar 

  52. Dolgaleva, K., Ng, W. C., Qian, L. & Aitchison, J. S. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Optics Exp. 19, 12440–12455 (2011).

    Article  ADS  Google Scholar 

  53. Baehr-Jones, T. W. & Hochberg, M. J. Polymer silicon hybrid systems: A platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

    Article  Google Scholar 

  54. Leuthold, J. et al. Silicon organic hybrid technology — A platform for practical nonlinear optics. Proc. IEEE 97, 1304–1316 (2009).

    Article  Google Scholar 

  55. Ikeda, K., Saperstein, R. E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008).

    Article  ADS  Google Scholar 

  56. Tan, D. T. H., Ikeda, K., Sun, P. C. & Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96, 061101 (2010).

    Article  ADS  Google Scholar 

  57. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  58. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  59. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  60. Henry, C. H., Kazarinov, R. F., Lee, H. J., Orlowsky, K. J. & Katz, L. E. Low loss Si3N4-SiO2 optical waveguides on Si. Appl. Opt. 26, 2621–2624 (1987).

    Article  ADS  Google Scholar 

  61. Daldosso, N. et al. Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line. IEEE J. Lightwave Technol. 22, 1734–1740 (2004).

    Article  ADS  Google Scholar 

  62. Little, B. E. et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

    Article  ADS  Google Scholar 

  63. Duchesne, D. et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 17, 1865–1870 (2009).

    Article  ADS  Google Scholar 

  64. Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

    Article  ADS  Google Scholar 

  65. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  66. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  67. Johnson, A. R. et al. Chip-based frequency combs with sub-100 GHz repetition rates. Opt. Lett. 37, 875–877 (2012).

    Article  ADS  Google Scholar 

  68. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  69. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  70. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2012).

    Article  ADS  Google Scholar 

  71. Peccianti, M. et al. Dual frequency comb mode-locked laser based on an integrated nonlinear microring resonator. Opt. Express 20, 27355–27363 (2012).

    Article  ADS  Google Scholar 

  72. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article  ADS  Google Scholar 

  73. Monro, T. M. et al. Progress in microstructured optical fibers. Annu. Rev. Mater. Res. 36, 467–495 (2006).

    Article  ADS  Google Scholar 

  74. Pasquazi, A. et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt. Express 18, 7634–7641 (2010).

    Article  ADS  Google Scholar 

  75. Lamont, M. R. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).

    Article  ADS  Google Scholar 

  76. Ferrera, M. et al. Low power four-wave mixing in an integrated, microring resonator with Q = 1.2 million. Opt. Express 17, 14098–14103 (2009).

    Article  ADS  Google Scholar 

  77. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  78. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  79. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    Article  ADS  Google Scholar 

  80. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    Article  ADS  Google Scholar 

  81. Pasquazi, A. et al. All-optical wavelength conversion in an integrated ring resonator. Opt. Express 18, 3858–3863 (2010).

    Article  ADS  Google Scholar 

  82. Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2, 296 (2011).

    Article  ADS  Google Scholar 

  83. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  84. Jiang, Z., Huang, C. B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  85. Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photon. 4, 117–122 (2010).

    Article  ADS  Google Scholar 

  86. Udem, Th., R . Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  87. Jones, D. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  88. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  89. Lamont, M. R., Luther-Davies, B., Choi, D.-Y., Madden, S. & Eggleton B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938 (2008).

    Article  ADS  Google Scholar 

  90. Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).

    Article  ADS  Google Scholar 

  91. Koonath, P., Solli, D. R. & Jalali, B. Limiting nature of continuum generation in silicon. Appl. Phys. Lett. 93, 091114 (2008).

    Article  ADS  Google Scholar 

  92. Duchesne, D. et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 18, 923–930 (2010).

    Article  ADS  Google Scholar 

  93. Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

    Article  ADS  Google Scholar 

  94. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  95. Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    Article  ADS  Google Scholar 

  96. Bartels, A. et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt. Lett. 30, 667–669 (2005).

    Article  ADS  Google Scholar 

  97. Herrmann, J. et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901 (2002).

    Article  ADS  Google Scholar 

  98. Herr, T. et al. Temporal solitons in optical microresonators. Preprint at http://arxiv.org/abs/1211.0733v3 (2013).

  99. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  100. Quiroga-Teixeiro, M., Balslev Clausen, C., Sørensen, M. P., Christiansen, P. L. & Andrekson, P. A. Passive mode locking by dissipative four-wave mixing. J. Opt. Soc. Am. B 15, 1315–1321 (1998).

    Article  ADS  Google Scholar 

  101. Sylvestre, T., Coen, S., Emplit, P. & Haelterman, M. Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation. Opt. Lett. 27, 482–484 (2002).

    Article  ADS  Google Scholar 

  102. Schröder, J., Vo, T. D. & Eggleton, B. J. Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. Opt. Lett. 34, 3902–3904 (2009).

    Article  ADS  Google Scholar 

  103. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    Article  ADS  Google Scholar 

  104. Yoshida, M., Ono, A. & Nakazawa, M. 10 GHz regeneratively mode-locked semiconductor optical amplifier fibre ring laser and its linewidth characteristics. Opt. Lett. 32, 3513–3515 (2007).

    Article  ADS  Google Scholar 

  105. Foster, M. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  106. Pasquazi, A. et al. Time-lens measurement of subpicosecond optical pulses in CMOS compatible high-index glass waveguides. IEEE J. Selected Topics in Quant. Electron. 18, 629–636 (2012).

    Article  ADS  Google Scholar 

  107. Trebino, R. Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

    Google Scholar 

  108. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  109. Iaconis, C. & Walmsley, I. A. Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quant. Electron. 35, 501–509 (1999).

    Article  ADS  Google Scholar 

  110. Gallmann, L. et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314–1316 (1999).

    Article  ADS  Google Scholar 

  111. Dorrer, C. et al. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1644–1646 (1999).

    Article  ADS  Google Scholar 

  112. Bromage, J., Dorrer, C., Begishev, I. A., Usechak, N. G. & Zuegel, J. D. Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry. Opt. Lett. 31, 3523–3525 (2006).

    Article  ADS  Google Scholar 

  113. Dorrer, C. & Bromage, J. High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry. Opt. Lett. 35, 1353–1355 (2010).

    Article  ADS  Google Scholar 

  114. Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Article  Google Scholar 

  115. Anderson, M. E., Monmayrant, A., Gorza, S. P., Wasylczyk, P. & Walmsley, I. A. SPIDER: a decade of measuring ultrashort pulses. Laser Phys. Lett. 5, 259–266 (2008).

    Article  ADS  Google Scholar 

  116. Pasquazi, A., Peccianti, M., Azaña, J., Moss, D. J. & Morandotti, R. FLEA: Fresnel-limited extraction algorithm for direct field reconstruction (SPIDER). Opt. Express 21, 5743–5758 (2013).

    Article  ADS  Google Scholar 

  117. Moss, D. J., van Driel, H. M. & Sipe, J. E. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl. Phys. Lett. 48, 1150 (1986).

    Article  ADS  Google Scholar 

  118. Orobtchouk, R. et al. in Proc. SPIE 6183, Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits paper 618304 (SPIE, 2006).

    Book  Google Scholar 

  119. Fedeli, J. M. et al. in Proc. 3rd IEEE International Conf. on Group IV Photonics 200–202 (IEEE, 2006).

    Google Scholar 

  120. Ikeda, K., Shen, Y. & Fainman, Y. Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. Opt. Express 15, 17761–17771 (2007).

    Article  ADS  Google Scholar 

  121. Shoji, Y. et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt. Express 18, 5668–5673 (2010).

    Article  ADS  Google Scholar 

  122. Narayanan, K. & Preble, S. F. Optical nonlinearities in hydrogenated amorphous silicon waveguides. Opt. Express 18, 8998–9905 (2010).

    Article  ADS  Google Scholar 

  123. Suda, S. et al. Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay. Opt. Lett. 37, 1382–1384 (2012).

    Article  ADS  Google Scholar 

  124. Wang, K.-Y. & Foster, A. C. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012).

    Article  ADS  Google Scholar 

  125. Kuyken, B. et al. On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt. Lett. 36, 552–554 (2011).

    Article  ADS  Google Scholar 

  126. Kuyken, B. et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express 19, B146–B153 (2011).

    Article  Google Scholar 

  127. Grillet, C. et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express 20, 22609 (2012).

    Article  ADS  Google Scholar 

  128. Corcoran, B. et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt. Express 18, 7770–7781 (2010).

    Article  ADS  Google Scholar 

  129. Monat, C. et al. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. of Selected Topics in Quant. Elect. 16, 344–356 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Australian Research Council Discovery Project and the Centres of Excellence programme, the Canadian Natural Sciences and Engineering Research Council (NSERC), the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation. We would also like to thank A. Pasquazi and M. Peccianti for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Moss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, D., Morandotti, R., Gaeta, A. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photon 7, 597–607 (2013). https://doi.org/10.1038/nphoton.2013.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing