Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physics and applications of laser diode chaos

Subjects

Abstract

This Review Article provides an overview of chaos in laser diodes by surveying experimental achievements in the area and explaining the theory behind the phenomenon. The fundamental physics underpinning laser diode chaos and also the opportunities for harnessing it for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient testbed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaos properties and chaos in lasers.
Figure 2: Configurations for achieving chaos in laser diode.
Figure 3: Chaos synchroniz ation and chaos communication using laser diodes.
Figure 4: Random number generation (RNG) using chaos from a laser diode.
Figure 5: The state-of-the-art of random number generation using chaos from a laser diode.

Similar content being viewed by others

References

  1. Maiman, T. H., Hoskins, R. H., D'Haenens, I. J., Asawa, C. K. & Evtuhov, V. Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby. Phys. Rev. 123, 1151–1157 (1961).

    ADS  Google Scholar 

  2. Kimura, T. & Otsuka, K. Response of a CW Nd3+:YAG laser to sinusoidal cavity perturbations. IEEE J. Quantum Electron. 6, 764–769 (1970).

    ADS  Google Scholar 

  3. Lorenz, E. N. Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  ADS  Google Scholar 

  4. Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).

    Article  ADS  Google Scholar 

  5. Li, T. Y. & Yorke, J. A. Period-three implies chaos. Am. Math. Mon. 82, 985 (1975).

    MathSciNet  MATH  Google Scholar 

  6. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time-series. Physica D 16, 285–317 (1985).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).

    ADS  MathSciNet  MATH  Google Scholar 

  8. Haken, H. Analogies between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975).

    Google Scholar 

  9. Feigenbaum, M. J. The onset spectrum of turbulence. Phys. Lett. A 74, 375–378 (1979).

    ADS  MathSciNet  Google Scholar 

  10. Ruelle, D. & Takens, F. On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Pomeau, Y. & Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980).

    ADS  MathSciNet  Google Scholar 

  12. Arecchi, F. T., Meucci, R., Puccioni, G. P. & Tredicce, J. R. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982).

    ADS  Google Scholar 

  13. Midavaine, T., Dangoisse, D. & Glorieux, P. Observation of chaos in a frequency-modulated CO2 laser. Phys. Rev. Lett. 55, 1989–1992 (1985).

    ADS  Google Scholar 

  14. Weiss, C. O., Abraham, N. B. & Hubner, U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988).

    ADS  Google Scholar 

  15. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    ADS  Google Scholar 

  16. Tredicce, J. R., Arecchi, F. T., Lippi, G. L. & Puccioni, G. P. Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985).

    ADS  Google Scholar 

  17. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    ADS  Google Scholar 

  18. Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos 3rd edn (Springer, 2013).

    MATH  Google Scholar 

  19. Luedge, K. Nonlinear Laser Dynamics: From Quantum Dots to Cryptography (Wiley-VCH, 2011).

    Google Scholar 

  20. Mukai, T. & Otsuka, K. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett. 55, 1711–1714 (1985).

    ADS  Google Scholar 

  21. Mork, J., Mark, J. & Tromborg, B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett. 65, 1999–2002 (1990).

    ADS  Google Scholar 

  22. Erneux, T., Gavrielides, A. & Sciamanna, M. Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback. Phys. Rev. A 66, 033809 (2002).

    ADS  Google Scholar 

  23. Morikawa, T., Mitsuhashi, Y., Shimada, J. & Kojima, Y. Return-beam-induced oscillations in self-coupled semiconductor lasers. Electron. Lett. 12, 435–436 (1976).

    Google Scholar 

  24. Lenstra, D., Verbeek, B. & Den Boef, A. Coherence collapse in single-mode semiconductor-lasers due to optical feedback. IEEE J. Quantum Electron. 21, 674–679 (1985).

    ADS  Google Scholar 

  25. Vicente, R., Dauden, J., Colet, P. & Toral, R. Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 41, 541–548 (2005).

    ADS  Google Scholar 

  26. Heil, T., Fischer, I., Elsaesser, W. & Gavrielides, A. Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett. 87, 243901 (2001).

    ADS  Google Scholar 

  27. Murakami, A. & Ohtsubo, J. Dynamics of semiconductor lasers with optical feedback from photorefractive phase conjugate mirror. Opt. Rev. 6, 359–364 (1999).

    Google Scholar 

  28. Karsaklian dal Bosco, A., Wolfersberger, D. & Sciamanna, M. Super-harmonic self-pulsations from a time-delayed phase-conjugate optical system. Appl. Phys. Lett. 105, 081101 (2014).

    ADS  Google Scholar 

  29. Fischer, A. P. A., Yousefi, M., Lenstra, D., Carter, M. W. & Vemuri, G. Filtered optical feedback induced frequency dynamics in semiconductor lasers. Phys. Rev. Lett. 92, 023901 (2004).

    ADS  Google Scholar 

  30. Giudici, M., Giuggioli, L., Green, C. & Tredicce, J. Dynamical behavior of semiconductor lasers with frequency selective optical feedback. Chaos Soliton. Fract. 10, 811–818 (1999).

    Google Scholar 

  31. Hong, Y., Paul, J., Spencer, P. S. & Shore, K. A. The effects of polarization-resolved optical feedback on the relative intensity noise and polarization stability of vertical-cavity surface-emitting lasers. IEEE J. Lightw. Technol. 24, 3210–3216 (2006).

    ADS  Google Scholar 

  32. Li, H., Hohl, A., Gavrielides, A., Hou, H. & Choquette, K. D. Stable polarization self-modulation in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 72, 2355–2357 (1998).

    ADS  Google Scholar 

  33. Sciamanna, M. et al. Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. Opt. Lett. 28, 1543–1545 (2003).

    ADS  Google Scholar 

  34. Kane, D. M. & Shore, K. A. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).

    Google Scholar 

  35. Soriano, M. C., Garcia-Ojalvo, J., Mirasso, C. R. & Fischer, I. Complex photonics: dynamics and applications of delay-coupled semiconductor lasers. Rev. Mod. Phys. 85, 421–470 (2013).

    ADS  Google Scholar 

  36. Simpson, T. B., Liu, J. M., Gavrielides, A., Kovanis, V. & Alsing, P. M. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994).

    ADS  Google Scholar 

  37. Wieczorek, S., Krauskopf, B., Simpson, T. B. & Lenstra, D. The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005).

    ADS  Google Scholar 

  38. Qi, X-Q. & Liu, J. M. Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Topics Quantum Electron. 17, 1198–1211 (2011).

    ADS  Google Scholar 

  39. Chow, W. W. & Wieczorek, S. Using chaos for remote sensing of laser radiation. Opt. Express 17, 7491–7504 (2009).

    ADS  Google Scholar 

  40. Gatare, I., Sciamanna, M., Buesa, J., Thienpont, H. & Panajotov, K. Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl. Phys. Lett. 88, 101106 (2006).

    ADS  Google Scholar 

  41. Wu, D. S., Slavik, R., Marra, G. & Richardson, D. J. Direct selection and amplification of individual narrowly spaced optical comb modes via injection locking: design and characterization. IEEE J. Lightw. Technol. 31, 2287–2295 (2013).

    ADS  Google Scholar 

  42. Lee, C. H., Yoon, T-H & Shin, S-Y. Period doubling and chaos in a directly modulated laser diode. Appl. Phys. Lett. 46, 95–97 (1985).

    ADS  Google Scholar 

  43. Chen, Y. C., Winful, H. G. & Liu, J. M. Subharmonic bifurcations and irregular pulsing behavior of modulated semiconductor lasers. Appl. Phys. Lett. 47, 208–210 (1985).

    ADS  Google Scholar 

  44. Liu, H-F. & Ngai, W. F. Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser. IEEE J. Quantum Electron. 29, 1668–1675 (1993).

    ADS  Google Scholar 

  45. Sciamanna, M., Valle, A., Mégret, P., Blondel, M. & Panajotov, K. Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers. Phys. Rev. E 68, 016207 (2003).

    ADS  Google Scholar 

  46. Vladimirov, A. G., Pimenov, A. S. & Rachinskii, D. Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser. IEEE J. Quantum Electron. 45, 462–468 (2009).

    ADS  Google Scholar 

  47. Bandelow, U., Radzunias, M., Vladimirov A. G., Hüttl, B. & Kaiser, R. 40 GHz mode-locked semiconductor lasers: theory, simulations and experiment. Opt. Quantum Electron. 38, 495–512 (2006).

    Google Scholar 

  48. Viktorov, E. A. et al. Stability of the mode-locked regime in quantum dot lasers. Appl. Phys. Lett. 91, 231116–231118 (2007).

    ADS  Google Scholar 

  49. Duan, G. H. & Landais, P. Self-pulsation in multielectrode distributed feedback lasers. IEEE Photon. Technol. Lett. 7, 278–280 (1995).

    ADS  Google Scholar 

  50. Mesaritakis, Ch. et al. Chaotic emission and tunable self-sustained pulsations in a two-section Fabry–Perot quantum dot laser. Appl. Phys. Lett. 98, 051104 (2011).

    ADS  Google Scholar 

  51. Yamada, M. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J. Quantum Electron. 29, 1330 (1993).

    ADS  Google Scholar 

  52. Kawaguchi, H. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. Appl. Phys. Lett. 45, 1264 (1984).

    ADS  Google Scholar 

  53. Yamada, M. et al. Experimental characterization of the feedback induced noise in self-pulsing lasers. IEICE T. Electron. E82-C, 2241–2247 (1999).

    Google Scholar 

  54. Tang, S. & Liu, J. M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 37, 329–336 (2001).

    ADS  Google Scholar 

  55. Lin, F-Y. & Liu, J. M. Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback. IEEE J. Quantum Electron. 39, 562–568 (2003).

    ADS  Google Scholar 

  56. Bauer, S. et al. Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 69, 016206 (2004).

    ADS  Google Scholar 

  57. Uchakov, O. V., Korneyev, N., Radzunias, M., Wünsche, H.-J. & Henneberger, F. Excitability of chaotic transients in a semiconductor laser. Europhys. Lett. 79, 30004 (2007).

    ADS  Google Scholar 

  58. Wu, J-G. et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt. Express 21, 23358–23364 (2013).

    ADS  Google Scholar 

  59. Argyris, A., Hamacher, M., Chlouverakis, K. E., Bogris, A. & Syvridis, D. Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100, 194101 (2008).

    ADS  Google Scholar 

  60. Sunada, S. et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Opt. Express 19, 5713–5724 (2011).

    ADS  Google Scholar 

  61. Shikora, S., Wünsche, H-J. & Henneberger, F. All-optical noninvasive chaos control of a semiconductor laser. Phys. Rev. E 78, 025202(R) (2008).

    ADS  Google Scholar 

  62. San Miguel, M., Feng, Q. & Moloney, J. V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728 (1995).

    ADS  Google Scholar 

  63. Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nature Photon. 7, 60–65 (2013).

    ADS  Google Scholar 

  64. Marciante, J. R. & Agrawal, G. P. Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. IEEE Photon. Technol. Lett. 10, 54–56 (1998).

    ADS  Google Scholar 

  65. Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979).

    ADS  Google Scholar 

  66. Goedgebuer, J. P., Larger, L., Porte, H. & Delorme, F. Chaos in wavelength with a feedback tunable laser diode. Phys. Rev. E 57, 2795–2798 (1998).

    ADS  Google Scholar 

  67. Peil, M., Jacquot, M. Chembo, Y., Larger, L. & Erneux, T. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E 79, 026208 (2009).

    ADS  Google Scholar 

  68. Callan, K. E., Illing, L., Gao, Z., Gauthier, D. J. & Schöll, E. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901 (2010).

    ADS  Google Scholar 

  69. Colet, P. & Roy, R. Digital communication with synchronized chaotic lasers. Opt. Lett. 19, 2056–2058 (1996).

    ADS  Google Scholar 

  70. Pecora, L. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  71. Roy, R. & Thornburg, K. S. Jr Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009–2012 (1994).

    ADS  Google Scholar 

  72. Sivaprakasam, S. & Shore, K. A. Demonstration of optical synchronization of chaotic external-cavity laser diodes. Opt. Lett. 24, 466–468 (1999).

    ADS  Google Scholar 

  73. Sivaprakasam, S. & Shore, K. A. Message encoding and decoding using chaotic external-cavity diode lasers. IEEE. J. Quantum Electron. 36, 35–39 (2000).

    ADS  Google Scholar 

  74. Spencer, P. S. & Mirasso, C. R. Analysis of optical chaos synchronization in frequency-detuned external-cavity VCSELs. IEEE. J. Quantum Electron. 35, 803–808 (1999).

    ADS  Google Scholar 

  75. Murakami, A. & Ohtsubo, J. Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002).

    ADS  Google Scholar 

  76. Sivaprakasam, S. et al. Inverse synchronization in semiconductor laser diodes. Phys. Rev. A 64, 013805 (2001).

    ADS  Google Scholar 

  77. Wedekind, I. & Parlitz, U. Experimental observation of synchronization and anti-synchronization of chaotic low-frequency fluctuations in external-cavity semiconductor lasers. Int. J. Bifurcat. Chaos 11, 1141–1147 (2001).

    Google Scholar 

  78. Mirasso, C. R., Colet, P. & Garcia Fernandez, P. Synchronization of chaotic semiconductor lasers: application to encoded communications. IEEE Photon. Technol. Lett. 8, 299–301 (1996).

    ADS  Google Scholar 

  79. Ahlers, V., Parlitz, U. & Lauterborn, W. Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers. Phys. Rev. E 58, 7208–7213 (1998).

    ADS  Google Scholar 

  80. Liu, Y. et al. Experimental observation of complete chaos synchronization in semiconductor lasers. Appl. Phys. Lett. 80, 4306–4308 (2002).

    ADS  Google Scholar 

  81. Masoller, C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001).

    ADS  Google Scholar 

  82. Gonzalez, C. M., Torrent, M. C. & Garcia-Ojalvo, J. M. Controlling the leader laggard dynamics in delay-synchronized lasers. Chaos 17, 033122 (2007).

    ADS  MATH  Google Scholar 

  83. Fischer, I. et al. Zero lag long range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006).

    ADS  Google Scholar 

  84. Halle, K. S., Wu, C. W., Itoh, M. & Chua, L. O. Spread spectrum communication through modulation of chaos. Int. J. Bifurcat. Chaos 3, 469–477 (1993).

    MATH  Google Scholar 

  85. VanWiggeren, G. D. & Roy, R. Communication with chaotic lasers. Science 279, 1198–1200 (1998).

    ADS  Google Scholar 

  86. Parlitz, U., Chua, L. O., Kocarev, L., Halle, K. S. & Shang, A. Transmission of digital signals by chaotic synchronization. Int. J. Bifurcat. Chaos 2, 973–977 (1992).

    MATH  Google Scholar 

  87. Heil, T. et al. ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron. 38, 1162–1170 (2002).

    ADS  Google Scholar 

  88. Liu, J-M., Chen, H-F & Tang, S. Synchronized chaotic optical communications at high bit rates. IEEE J. Quantum Electron. 38, 1184–1196 (2002).

    ADS  Google Scholar 

  89. Lee, M. W. & Shore, K. A. Demonstration of a chaotic optical message relay using DFB laser diodes. IEEE Photon. Technol. Lett. 18, 169–171 (2006).

    ADS  Google Scholar 

  90. Lee, M. W. & Shore, K. A. Chaotic message broadcasting using DFB laser diodes. Electron. Lett. 40, 614–615 (2004).

    Google Scholar 

  91. Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005).

    ADS  Google Scholar 

  92. Lee, M. W. & Shore, K. A. Two-mode chaos synchronization using a multimode external-cavity laser diode and two single-mode laser diodes. IEEE J. Lightw. Technol. 23, 1068–1073 (2005).

    ADS  Google Scholar 

  93. Sciamanna, M., Gatare, I., Locquet, A. & Panajotov, K. Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. Phys. Rev. E 75, 056213 (2007).

    ADS  Google Scholar 

  94. Rontani, D., Sciamanna, M., Locquet, A. & Citrin, D. S. Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks. Phys. Rev. E 80, 066209 (2009).

    ADS  Google Scholar 

  95. Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Spectrally efficient multiplexing of chaotic light. Opt. Lett. 35, 2016–2018 (2010).

    ADS  Google Scholar 

  96. Priyadarshi, S., Pierce, I., Hong. Y. & Shore, K. A. Optimal operating conditions for external cavity semiconductor laser optical chaos communication system. Semicond. Sci. Tech. 27, 094002 (2012).

    ADS  Google Scholar 

  97. Bu¨nner, M. J., Kittel, A., Parisi, J., Fischer, I. & Elsaesser, W. Estimation of delay times from a delayed optical feedback laser experiment. Europhys. Lett. 42, 353 (1998).

    ADS  Google Scholar 

  98. Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007).

    ADS  Google Scholar 

  99. Lin, H., Hong, Y. & Shore, K. A. Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback. IEEE J. Lightw. Technol. 32, 1829–1836 (2014).

    ADS  Google Scholar 

  100. Tiana-Alsina, J., Torrent, M. C., Rosso, O. A., Masoller, C. & Garcia-Ojalvo, J. Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback. Phys. Rev A 82, 013819 (2010).

    ADS  Google Scholar 

  101. Zunino, L., Rosso, O. A. & Soriano, M. C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Topics Quantum Electron. 17, 1250–1257 (2011).

    ADS  Google Scholar 

  102. Toomey, J. P. & Kane, D. M. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22, 1713–1725 (2014).

    ADS  Google Scholar 

  103. Bandt, Ch & Pompe, B. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).

    ADS  Google Scholar 

  104. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. & Zellinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).

    ADS  Google Scholar 

  105. Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states. Nature Photon. 4, 711–715 (2010).

    ADS  Google Scholar 

  106. Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).

    ADS  Google Scholar 

  107. Hirano, K. et al. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18, 5512–5524 (2010).

    ADS  Google Scholar 

  108. Reidler, I., Aviad, Y., Rosenbluh, M. & Kanter, I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102 (2009).

    ADS  Google Scholar 

  109. Kanter, I., Aviad, Y., Reidler, I., Cohen, E. & Rosenbluh, M. An optical ultrafast random bit generator. Nature Photon. 4, 58–61 (2010).

    ADS  Google Scholar 

  110. Oliver, N., Soriano, M., Sukow, D. & Fischer, I. Fast random bit generation using a chaotic laser: approaching the information theoretic limit. IEEE J. Quantum Electron. 49, 910–918 (2013).

    ADS  Google Scholar 

  111. Akizawa, T. et al. Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8 x 50 Gb/s. IEEE Photon. Technol. Lett. 24, 1042–1044 (2012).

    ADS  Google Scholar 

  112. Harayama, T. et al. Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys. Rev. A 83, 031803(R) (2011).

    ADS  Google Scholar 

  113. Argyris, A., Degliannidis, S., Pikasis, E., Bogris, A. & Syvridis, D. Implementation of 140 Gb s−1 true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18, 18763–18768 (2010).

    ADS  Google Scholar 

  114. Virte, M., Mercier, E., Thienpont, H., Panajotov, K. & Sciamanna, M. Physical random bit generation from chaotic solitary laser diode. Opt. Express 22, 17271–17280 (2014).

    ADS  Google Scholar 

  115. Li, X-Z. & Chan, S-C. Random bit generation using an optically injected semiconductor laser in chaos with oversampling. Opt. Lett. 37, 2163–2165 (2012).

    ADS  Google Scholar 

  116. Myneni, K., Barr, T. A., Reed, B. R., Pethel, S. D. & Corron, N. J. High-precision ranging using a chaotic laser pulse train. Appl. Phys. Lett. 78, 1496–1498 (2001).

    ADS  Google Scholar 

  117. Lin, F. Y. & Liu, J. M. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 40, 815–820 (2004).

    ADS  Google Scholar 

  118. Wang, Y., Wang, B. & Wang, A. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photon. Technol. Lett. 20, 1636–1638 (2008).

    ADS  Google Scholar 

  119. Sinha, S. & Ditto, W. L. Dynamics based computation. Phys. Rev. Lett. 81, 2156–2159 (1998).

    ADS  Google Scholar 

  120. Murali, K., Sinha, S. & Ditto, W. L. Implementation of NOR gate by a chaotic Chua's circuit. Int. J. Bifurcat. Chaos 13, 2669–2672 (2003).

    MATH  Google Scholar 

  121. Kim, J. Y., Kang, J. M., Kim, T. K. & Han, S. K. 10 Gbit s−1 all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–304 (2006).

    Google Scholar 

  122. Chlouverakis, K. A. & Adams, M. J. Optoelectronic realisation of NOR logic gate using chaotic two-section lasers. Electron. Lett. 41, 359–360 (2005).

    Google Scholar 

  123. Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting diodes. Nature Photon. 8, 468–473 (2014).

    ADS  Google Scholar 

  124. Wojcik, A. K., Yu, N., Diehl, L., Capasso, F. & Belyanin, A. Nonlinear dynamics of coupled transverse modes in quantum cascade lasers. J. Mod. Opt. 7, 1892–1899 (2010).

    ADS  MATH  Google Scholar 

  125. Manju Shrii, M., Senthilkumar, D. V. & Kurths, J. Delay-induced synchrony in complex networks with conjugate coupling. Phys. Rev. E 85, 057203 (2012).

    ADS  Google Scholar 

  126. Bonatto, C. et al. Deterministic optical rogue waves. Phys. Rev. Lett. 107, 053901 (2011).

    ADS  Google Scholar 

  127. Karsaklian dal Bosco, A., Wolfersberger, D. & Sciamanna, M. Extreme events in time-delayed nonlinear optics. Opt. Lett. 38, 703–705 (2013).

    ADS  Google Scholar 

  128. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nature Photon. 8, 755–764 (2014).

    ADS  Google Scholar 

  129. Verschueren, N., Bortolozzo, U., Clerc., M. G. & Residori, S. Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. Phys. Rev. Lett. 110, 104101 (2013).

    ADS  Google Scholar 

  130. Tucker, R. S. Green optical communications — part II: energy limitations in transport. IEEE J. Sel. Topics Quantum. Electron. 17, 245–260 (2011).

    ADS  Google Scholar 

  131. Hübner, U., Abraham, N. B. & Weiss, C. O. Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A 40, 6354–6365 (1989).

    ADS  Google Scholar 

  132. Lee, M. W. & Shore, K. A. Chaotic message broadcasting using DFB laser diodes. Electron. Lett. 40, 614–615 (2004).

    Google Scholar 

  133. Nguimdo, R. M. et al. Fast random bits generation based on a single chaotic semiconductor ring laser. Opt. Express 20, 28603–28613 (2012).

    ADS  Google Scholar 

  134. Oliver, N., Soriano, M. C., Sukow, D. W. & Fischer, I. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. Opt. Lett. 36, 4632–4634 (2011).

    ADS  Google Scholar 

  135. Li, X-Z. & Chan, S-C. Heterodyne Random bit generation using an optically injected semiconductor laser in chaos. IEEE J. Quantum Electron. 49, 829–838 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

M.S. acknowledges the financial support provided by Fondation Supélec, Conseil Régional de Lorraine, Agence Nationale de la Recherche (ANR) through the project TINO, grant number ANR-12-JS03-005, FEDER through the project PHOTON, and the Inter-University Attraction Pole (IAP) program of BELSPO through the project Photonics@be, grant number IAP P7/35. K.A.S. acknowledges the financial support provided by the Sêr Cymru National Research Network in Advanced Engineering and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sciamanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciamanna, M., Shore, K. Physics and applications of laser diode chaos. Nature Photon 9, 151–162 (2015). https://doi.org/10.1038/nphoton.2014.326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing