Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solid-state single-photon emitters

Abstract

Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solid-state quantum systems emphasized in this Review.
Figure 2: Electrically driven single-photon emitters.
Figure 3: Coupling single emitters to optical resonators.
Figure 4: Applications of quantum emitters.
Figure 5: Future applications of solid-state single emitters.

Similar content being viewed by others

References

  1. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS  Google Scholar 

  2. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Google Scholar 

  3. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    ADS  Google Scholar 

  4. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photon. 9, 363–373 (2015).

    ADS  Google Scholar 

  5. Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

    ADS  Google Scholar 

  6. Buckley, S., Rivoire, K. & Vuckovic, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    ADS  Google Scholar 

  7. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  8. Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger–Horne–Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015).

    ADS  Google Scholar 

  9. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Google Scholar 

  10. Aharonov, D., Ambainis, A., Kempe, J. & Vazirani, U. in Proc. 33rd Annual ACM Symposium on Theory of Computing 50–59 (ACM, 2001).

    MATH  Google Scholar 

  11. Aaronson, N. N. P. & Arkhipov, A. in Proc. 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

    MATH  Google Scholar 

  12. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  Google Scholar 

  13. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Google Scholar 

  14. Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

    ADS  Google Scholar 

  15. Cheung, J. Y. et al. The quantum candela: a re-definition of the standard units for optical radiation. J. Mod. Opt. 54, 373–396 (2007).

    ADS  MathSciNet  Google Scholar 

  16. Chu, X.-L., Götzinger, S. & Sandoghdar, V. A high-fidelity photon gun: intensity-squeezed light from a single molecule. Preprint at https://arXiv.org/abs/1608.07980 (2016).

  17. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    ADS  Google Scholar 

  18. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    ADS  Google Scholar 

  19. Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    ADS  Google Scholar 

  20. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  Google Scholar 

  21. Yan, Z. et al. Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide. Appl. Phys. Lett. 107, 231106 (2015).

    ADS  Google Scholar 

  22. Koehl, W. F., Seo, H., Galli, G. & Awschalom, D. D. Designing defect spins for wafer-scale quantum technologies. MRS Bull. 40, 1146–1153 (2015).

    Google Scholar 

  23. Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).

    ADS  Google Scholar 

  24. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Google Scholar 

  25. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Google Scholar 

  26. Kim, J.-H., Cai, T., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).

    ADS  Google Scholar 

  27. Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    ADS  Google Scholar 

  28. Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

    Google Scholar 

  29. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    ADS  Google Scholar 

  30. Sipahigil, A. et al. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012).

    ADS  Google Scholar 

  31. Acosta, V. M. et al. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 206401 (2012).

    ADS  Google Scholar 

  32. Rogers, L. J. et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun. 5, 4739 (2014).

    ADS  Google Scholar 

  33. Ralchenko, V. G. et al. Observation of the Ge-vacancy color center in microcrystalline diamond films. Bull. Lebedev Phys. Inst. 42, 165–168 (2015).

    ADS  Google Scholar 

  34. Iwasaki, T. et al. Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015).

    ADS  Google Scholar 

  35. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014).

    ADS  Google Scholar 

  36. Umeda, T. et al. Identification of the carbon antisite–vacancy pair in 4H-SiC. Phys. Rev. Lett. 96, 145501 (2006).

    ADS  Google Scholar 

  37. Lohrmann, A. et al. Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).

    ADS  Google Scholar 

  38. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    ADS  Google Scholar 

  39. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    ADS  Google Scholar 

  40. Riedel, D. et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

    ADS  Google Scholar 

  41. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    ADS  Google Scholar 

  42. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    ADS  Google Scholar 

  43. Lienhard, B. et al. Bright and stable visible-spectrum single photon emitter in silicon carbide. Optica 3, 768–774 (2016).

    ADS  Google Scholar 

  44. Morfa, A. J. et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 12, 949–954 (2012).

    ADS  Google Scholar 

  45. Neitzke, O. et al. Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature. Nano Lett. 15, 3024–3029 (2015).

    ADS  Google Scholar 

  46. Jungwirth, N. R. et al. A single-molecule approach to ZnO defect studies: single photons and single defects. J. Appl. Phys. 116, 043509 (2014).

    ADS  Google Scholar 

  47. Jungwirth, N. R., Chang, H.-S., Jiang, M. & Fuchs, G. D. Polarization spectroscopy of defect-based single photon sources in ZnO. ACS Nano 10, 1210–1215 (2016).

    Google Scholar 

  48. Choi, S. et al. Single photon emission from ZnO nanoparticles. Appl. Phys. Lett. 104, 261101 (2014).

    ADS  Google Scholar 

  49. Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

    ADS  Google Scholar 

  50. Xia, K. et al. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal. Phys. Rev. Lett. 115, 093602 (2015).

    ADS  Google Scholar 

  51. Emanuel, E., Tobias, U., Stephan, G. & Vahid, S. Spectroscopic detection of single Pr3+ ions on the 3H4−1D2 transition. New J. Phys. 17, 083018 (2015).

    Google Scholar 

  52. Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014).

    ADS  Google Scholar 

  53. Kolesov, R. et al. Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state. Phys. Rev. Lett. 111, 120502 (2013).

    ADS  Google Scholar 

  54. Zhong, T., Kindem, J. M., Miyazono, E. & Faraon, A. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015).

    ADS  Google Scholar 

  55. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).

    ADS  Google Scholar 

  56. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotech. 11, 37–41 (2016).

    ADS  Google Scholar 

  57. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497–502 (2015).

    ADS  Google Scholar 

  58. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nat. Nanotech. 10, 491–496 (2015).

    ADS  Google Scholar 

  59. Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2 . Nano Lett. 15, 7567–7573 (2015).

    ADS  Google Scholar 

  60. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotech. 10, 503–506 (2015).

    ADS  Google Scholar 

  61. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    ADS  Google Scholar 

  62. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–511 (2015).

    ADS  Google Scholar 

  63. Kern, J. et al. Nanoscale positioning of single-photon emitters in atomically thin WSe2 . Adv. Mater. 28, 7101–7105 (2016).

    Google Scholar 

  64. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    ADS  Google Scholar 

  65. Jungwirth, N. R. et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Preprint at http://arXiv.org/abs/1605.04445 (2016).

  66. Martinez, L. J. et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Preprint at http://arXiv.org/abs/1606.04124 (2016).

  67. Tran, T. T. et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys. Rev. Appl. 5, 034005 (2016).

    ADS  Google Scholar 

  68. Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotech. 10, 671–675 (2015).

    ADS  Google Scholar 

  69. Hogele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    ADS  Google Scholar 

  70. Jeantet, A. et al. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett. 116, 247402 (2016).

    ADS  Google Scholar 

  71. Akopian, N., Patriarche, G., Liu, L., Harmand, J. C. & Zwiller, V. Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010).

    ADS  Google Scholar 

  72. Dory, C. et al. Complete coherent control of a quantum dot strongly coupled to a nanocavity. Sci. Rep. 6, 25172 (2016).

    ADS  Google Scholar 

  73. Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotech. 11, 539–544 (2016).

    ADS  Google Scholar 

  74. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    ADS  Google Scholar 

  75. Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    ADS  Google Scholar 

  76. Muller, M., Bounouar, S., Jons, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    ADS  Google Scholar 

  77. Versteegh, M. A. M. et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014).

    ADS  Google Scholar 

  78. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    ADS  Google Scholar 

  79. Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).

    ADS  Google Scholar 

  80. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    ADS  Google Scholar 

  81. Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012).

    ADS  Google Scholar 

  82. Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

    ADS  Google Scholar 

  83. Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    ADS  Google Scholar 

  84. Sapienza, L., Davanco, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015).

    ADS  Google Scholar 

  85. Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014).

    ADS  Google Scholar 

  86. Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887–892 (2006).

    ADS  Google Scholar 

  87. Deshpande, S., Das, A. & Bhattacharya, P. Blue single photon emission up to 200 K from an InGaN quantum dot in AlGaN nanowire. Appl. Phys. Lett. 102, 161114 (2013).

    ADS  Google Scholar 

  88. Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    Google Scholar 

  89. Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    ADS  Google Scholar 

  90. Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun. 2, 539 (2011).

    ADS  Google Scholar 

  91. Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    ADS  Google Scholar 

  92. Murray, E. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 107, 171108 (2015).

    ADS  Google Scholar 

  93. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Google Scholar 

  94. Heindel, T. et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    ADS  Google Scholar 

  95. Deshpande, S., Heo, J., Das, A. & Bhattacharya, P. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nat. Commun. 4, 1675 (2013).

    ADS  Google Scholar 

  96. Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

    ADS  Google Scholar 

  97. Clark, G. et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016).

    ADS  Google Scholar 

  98. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    ADS  Google Scholar 

  99. Lohrmann, A. et al. Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2012).

    ADS  Google Scholar 

  100. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    ADS  Google Scholar 

  101. Zaitsev, A. M., Bergman, A. A., Gorokhovsky, A. A. & Huang, M. B. Diamond light emitting diode activated with Xe optical centers. Phys. Status Solidi A 203, 638–642 (2006).

    ADS  Google Scholar 

  102. Berhane, A. M. et al. Electrical excitation of silicon-vacancy centers in single crystal diamond. Appl. Phys. Lett. 106, 171102 (2015).

    ADS  Google Scholar 

  103. Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotech. 10, 949–953 (2015).

    ADS  Google Scholar 

  104. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    ADS  Google Scholar 

  105. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    ADS  Google Scholar 

  106. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    ADS  Google Scholar 

  107. Kolchin, P. et al. High Purcell factor due to coupling of a single emitter to a dielectric slot waveguide. Nano Lett. 15, 464–468 (2015).

    ADS  Google Scholar 

  108. Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    ADS  Google Scholar 

  109. Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

    ADS  Google Scholar 

  110. Yalla, R., Sadgrove, M., Nayak, K. P. & Hakuta, K. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys. Rev. Lett. 113, 143601 (2014).

    ADS  Google Scholar 

  111. Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    ADS  Google Scholar 

  112. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    ADS  Google Scholar 

  113. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

    ADS  Google Scholar 

  114. Lo, H. K., Ma, X. F. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Google Scholar 

  115. Takemoto, K. et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).

    ADS  Google Scholar 

  116. Guha, S. et al. Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015).

    ADS  Google Scholar 

  117. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    ADS  Google Scholar 

  118. Pant, M., Krovi, H., Englund, D. & Guha, S. Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Preprint at https://arXiv.org/abs/1603.01353 (2016).

  119. Li, Y., Humphreys, P. C., Mendoza, G. J. & Benjamin, S. C. Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015).

    Google Scholar 

  120. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    ADS  Google Scholar 

  121. Rohde, P. P. Boson sampling with photons of arbitrary spectral structure. Phys. Rev. A 91, 012307 (2015).

    ADS  Google Scholar 

  122. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).

    ADS  Google Scholar 

  123. Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nat. Photon. 7, 311–315 (2013).

    ADS  Google Scholar 

  124. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    ADS  Google Scholar 

  125. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Google Scholar 

  126. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  127. Yeo, I. et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotech. 9, 106–110 (2014).

    ADS  Google Scholar 

  128. Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    ADS  Google Scholar 

  129. Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    ADS  Google Scholar 

  130. Khanaliloo, B. et al. Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X 5, 041051 (2015).

    Google Scholar 

  131. MacQuarrie, E. R., Gosavi, T. A., Jungwirth, N. R., Bhave, S. A. & Fuchs, G. D. Mechanical spin control of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 111, 227602 (2013).

    ADS  Google Scholar 

  132. Burek, M. J. et al. Diamond optomechanical crystals. Preprint at http://arXiv.org/abs/1512.04166 (2016).

  133. Bracher, D. O. & Hu, E. L. Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC. Nano Lett. 15, 6202–6207 (2015).

    ADS  Google Scholar 

  134. Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

    ADS  Google Scholar 

  135. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    ADS  Google Scholar 

  136. Fuechsle, M. et al. A single-atom transistor. Nat. Nanotech. 7, 242–246 (2012).

    ADS  Google Scholar 

  137. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    ADS  Google Scholar 

  138. Neu, E. et al. Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    ADS  Google Scholar 

  139. Schröder, T., Gädeke, F., Banholzer, M. J. & Benson, O. Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 055017 (2011).

    ADS  Google Scholar 

  140. Siyushev, P. et al. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds. New J. Phys. 11, 113029 (2009).

    ADS  Google Scholar 

  141. Siyushev, P. et al. Coherent properties of single rare-earth spin qubits. Nat. Commun. 5, 3895 (2014).

    ADS  Google Scholar 

  142. Luozhou, L. et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15, 1493–1497 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank C.-Y. Lu for discussions, and G. Fuchs, P. Barclay, D. Lake, R. Johne and A. Fiore for assistance with images. Financial support from the Australian Research Council (via DP140102721, IH150100028, DE130100592), FEI Company, the Asian Office of Aerospace Research and Development grant FA2386-15-1-4044, the Army Research Laboratory, the Center for Distributed Quantum Information program and the Air Force Office of Scientific Research Multidisciplinary University Research Initiative (FA9550-14-1-0052) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Aharonovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nature Photon 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing