Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergent complex neural dynamics

Abstract

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain’s hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal avalanches are complex.
Figure 2: Large-scale emergent brain networks.
Figure 3: Complex networks derived from the brain fMRI data mimic those from the Ising model only at the critical temperature.

Similar content being viewed by others

References

  1. Bak, P. How Nature Works (Oxford Univ. Press, 1997).

    MATH  Google Scholar 

  2. Jensen, H. J. Self-Organized Criticality (Cambridge Univ. Press, 1998).

    Book  MATH  Google Scholar 

  3. Buchanan, M. Ubiquity (Weidenfeld and Nicolson, 2000).

    Google Scholar 

  4. Christensen, K. & Moloney, N. R. Complexity and Criticality (Imperial College Press, 2005).

    Book  MATH  Google Scholar 

  5. Aldana, M., Balleza, E., Kauffman, S. A. & Resendis, O. Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433–448 (2007).

    Article  MathSciNet  Google Scholar 

  6. Balleza, E. et al. Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE 3, e2456 (2008).

    Article  ADS  Google Scholar 

  7. Lux, T. & Marchesi, M. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397, 498–500 (1999).

    Article  ADS  Google Scholar 

  8. Malamud, B. D., Morein, G. & Turcotte, D. L. Forest fires: An example of self-organized critical behaviour. Science 281, 1840–1842 (1998).

    Article  ADS  Google Scholar 

  9. Nykter, M. et al. Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl Acad. Sci. USA 105, 1897–1900 (2008).

    Article  ADS  Google Scholar 

  10. Takayasu, M., Takayasu, H. & Fukuda, K. Dynamic phase transition observed in the internet traffic flow. Physica A 277, 248–255 (2000).

    Article  ADS  MATH  Google Scholar 

  11. Peters, O. & Neelin, D. Critical phenomena in atmospheric precipitation. Nature Phys. 2, 393–396 (2006).

    Article  ADS  Google Scholar 

  12. Peters, O., Hertlein, C. & Christensen, K. A complexity view of rainfall. Phys. Rev. Lett. 88, 018701 (2002).

    Article  ADS  Google Scholar 

  13. Peters, O. & Christensen, K. Rain: Relaxations in the sky. Phys. Rev. E 66, 036120 (2002).

    Article  ADS  Google Scholar 

  14. Hopfield, J. J. Neural networks and physical systems with emergent collective computational capabilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bak, P. & Paczuski, M. Complexity, contingency, and criticality. Proc. Natl Acad. Sci. USA 92, 6689–6696 (1995).

    Article  ADS  Google Scholar 

  16. Anderson, P. More is different. Science 177, 393–396 (1972).

    Article  ADS  Google Scholar 

  17. Buzsaki, G. Rhythms of the Brain (Oxford Univ., 2006).

    Book  MATH  Google Scholar 

  18. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Ilmoniemi, R. J. Long-range temporal correlations and scaling behaviour in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).

    Article  Google Scholar 

  19. Stam, C. J. & de Bruin, E. A. Scale-free dynamics of global functional connectivity in the human brain. Hum. Brain Mapp. 22, 97–109 (2004).

    Article  Google Scholar 

  20. Plenz, D. & Thiagarajan, T. C. The organizing principles of neuronal avalanches: Cell assemblies in the cortex? Trends Neurosci. 30, 101–110 (2007).

    Article  Google Scholar 

  21. Bullock, T. H., Mcclune, M. C. & Enright, J. T. Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series. Neuroscience 121, 233–252 (2003).

    Article  Google Scholar 

  22. Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Article  Google Scholar 

  23. Eckhorn, R. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Prog. Brain Res. 102, 405–426 (1994).

    Article  Google Scholar 

  24. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  25. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  Google Scholar 

  26. Gilden, D. L. Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56 (2001).

    Article  Google Scholar 

  27. Maylor, E. A., Chater, N. & Brown, G. D. Scale invariance in the retrieval of retrospective and prospective memories. Psychon. Bull. Rev. 8, 162–167 (2001).

    Article  Google Scholar 

  28. Ward, L. M. Dynamical Cognitive Science (The MIT Press, 2002).

    Google Scholar 

  29. Nakamura, T. et al. Universal scaling law in human behavioral organization. Phys. Rev. Lett. 99, 138103 (2007).

    Article  ADS  Google Scholar 

  30. Anteneodo, C. & Chialvo, D. R. Unraveling the fluctuations of animal motor activity. Chaos 19, 033123 (2009).

    Article  ADS  Google Scholar 

  31. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  ADS  Google Scholar 

  32. Beckers, R., Deneubourg, J-L., Goss, S. & Pasteels, J. M. Collective decision making through food recruitment. Insectes Soc. 37, 258–267 (1990).

    Article  Google Scholar 

  33. Beekman, M. & Sumpter, D. J. T. Ratnieks FLW phase transition between disordered and ordered foraging in pharaohs ants. Proc. Natl Acad. Sci. USA 98, 9703–9706 (2001).

    Article  ADS  Google Scholar 

  34. Rauch, E. M., Chialvo, D. R. & Millonas, M. M. Pattern formation and functionality in swarm models. Phys. Lett. A 207, 185–193 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium systems: From Dissipative Structures to Order Through Fluctuations (Wiley, 1977).

    MATH  Google Scholar 

  36. Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl Acad. Sci. USA 107, 11865–11870 (2010).

    Article  ADS  Google Scholar 

  37. Bak, P. & Chialvo, D. R. Adaptive learning by extremal dynamics and negative feedback. Phys. Rev. E 63, 031912 (2001).

    Article  ADS  Google Scholar 

  38. Chialvo, D. R. & Bak, P. Learning from mistakes. Neuroscience 90, 1137–1148 (1999).

    Article  Google Scholar 

  39. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  Google Scholar 

  40. Beggs, J. M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004).

    Article  Google Scholar 

  41. Zapperi, S., Baekgaard, L. K. & Stanley, H. E. Self-organized branching processes: meanfield theory for avalanches. Phys. Rev. Lett. 75, 4071–4074 (1995).

    Article  ADS  Google Scholar 

  42. Eurich, C. W., Herrmann, J. M. & Ernst, U. A. Finite-size effects of avalanche dynamics. Phys. Rev. E 66, 066137 (2002).

    Article  ADS  Google Scholar 

  43. Teramae, J. N. & Fukai, T. Local cortical circuit model inferred from power-law distributed neuronal avalanches. J. Comput. Neurosci. 22, 301–312 (2007).

    Article  MathSciNet  Google Scholar 

  44. Mazzoni, A. et al. On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE 2, e439 (2007).

    Article  ADS  Google Scholar 

  45. Pasquale, V., Massobrio, P., Bologna, L. L., Chiappalone, M. & Martinoia, S. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153, 1354–1369 (2008).

    Article  Google Scholar 

  46. Petermann, T. et al. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl Acad. Sci. USA 106, 15921–15926 (2009).

    Article  ADS  Google Scholar 

  47. Hahn, G. et al. Neuronal avalanches in spontaneous activity in vivo. J. Neurophysiol. (2010, in the press).

  48. Stewart, C. V. & Plenz, D. Inverted U profile of dopamine-NMDA mediated spontaneous avalanche recurrence in superficial layers o rat prefrontal cortex. J. Neurosci. 23, 8148–8159 (2006).

    Article  Google Scholar 

  49. Gireesh, E. D. & Plenz, D. Neuronal avalanches organize as nested theta- and beta/gamma oscillations during development of cortical layer 2/3. Proc. Natl Acad. Sci. USA 105, 7576–7581 (2008).

    Article  ADS  Google Scholar 

  50. Bedard, C., Kroger, H. & Destexhe, A. Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97, 118102 (2006).

    Article  ADS  Google Scholar 

  51. Touboul, J. & Destexhe, A. Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLoS One 5, e8982 (2010).

    Article  ADS  Google Scholar 

  52. Plenz, D. & Chialvo, D. R. Scaling properties of neuronal avalanches are consistent with critical dynamics. Preprint at http://arxiv.org/abs/0912.5369v1 [q-bio.NC] (2009).

  53. Kelso, J. A. S. et al. Phase transition in brain and human behaviour. Phys. Lett. A 169, 134–144 (1992).

    Article  ADS  Google Scholar 

  54. Kelso, J. A. S. Phase transitions and critical behaviour in human bimanual coordination. Am. J. Physiol. Regul. Integr. Comp. 15, R1000–R1004 (1984).

    Article  Google Scholar 

  55. Werner, G. Fractals in the nervous system: Conceptual implications for theoretical neuroscience. Front. Physio. 1, 15 (2010).

    Google Scholar 

  56. Bullmore, E. & Sporn, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  Google Scholar 

  57. Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cog. Sci. 8, 418–425 (2004).

    Article  Google Scholar 

  58. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  Google Scholar 

  59. Smith, S. M. et al. Correspondence of the brains functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  ADS  Google Scholar 

  60. Xiong, J., Parsons, L., Gao, J. & Fox, P. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum. Brain Mapp. 8, 151–156 (1999).

    Article  Google Scholar 

  61. Cordes, D. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am. J. Neuroradiol. 21, 1636–1644 (2000).

    Google Scholar 

  62. Beckmann, C. F., De Luca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Phil. Trans. R. Soc. Lond. 360, 1001–1013 (2005).

    Article  Google Scholar 

  63. Fukunaga, M. et al. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn. Reson. Imaging 24, 979–992 (2006).

    Article  MathSciNet  Google Scholar 

  64. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–87 (2007).

    Article  ADS  Google Scholar 

  65. Kitzbichler, M. G., Smith, M. L., Christensen, S. R. & Bullmore, E. Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  66. Kuramoto, Y. Chemical Oscillations, Waves and Turbulence (Springer, 1984).

    Book  MATH  Google Scholar 

  67. Fraiman, D., Balenzuela, P., Foss, J. & Chialvo, D. R. Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 79, 061922 (2009).

    Article  ADS  Google Scholar 

  68. Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).

    Article  ADS  Google Scholar 

  69. van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hullshof Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage 43, 528–539 (2008).

    Article  Google Scholar 

  70. Baliki, M. N., Geha, P. Y., Apkarian, A. V. & Chialvo, D. R. Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 28, 1398–1403 (2008).

    Article  Google Scholar 

  71. Expert, P. et al. Self-similar correlation function in brain resting state fMRI. J. R. Soc. Interface (in the press); preprint at http://arxiv.org/abs/1003.3682v1 [q-biol.NC] (2010).

  72. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex 15, 1332–1342 (2005).

    Article  Google Scholar 

  73. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article  ADS  Google Scholar 

  74. Broyd, S. J. et al. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci. Biobehav. Rev. 33, 279–296 (2009).

    Article  Google Scholar 

  75. Zhang, D. & Raichle, M. E. Disease and the brains dark energy. Nature Rev. Neurol. 6, 15–28 (2010).

    Google Scholar 

  76. He, Y., Chen, Z. & Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimers disease. J. Neurosci. 28, 4756–4766 (2008).

    Article  Google Scholar 

  77. Garrity, A. G. et al. Aberrant ‘default mode’ functional connectivity in schizophrenia. Am. J. Psychiatry 164, 450–457 (2007).

    Article  Google Scholar 

  78. Laufs, H. et al. Temporal lobe interictal epileptic discharges affect cerebral activity in default mode brain regions. Hum. Brain Mapp. 28, 1023–1032 (2007).

    Article  Google Scholar 

  79. Osorio, I. et al. Epileptic seizures: Quakes of the brain? Phys. Rev. E 82, 021919 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  80. Chialvo, D. R. in Cooperative Behavior in Neural Systems: Ninth Granada Lectures (eds Marro, J., Garrido, P. L. & Torres, J. J.) 1–12 (AIP Conference Proceedings, 2007).

    Google Scholar 

  81. Bienenstock, E. & Lehmann, D. Regulated criticality in the brain? Adv. Complex Syst. 1, 361–384 (1998).

    Google Scholar 

  82. Magnasco, M. O., Piro, O. & Cecchi, G. A. Self-tuned critical anti-Hebbian networks. Phys. Rev. Lett. 102, 258102 (2009).

    Article  ADS  Google Scholar 

  83. Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nature Phys. 3, 857–860 (2007).

    Article  ADS  Google Scholar 

  84. Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at criticality. Nature Phys. 2, 348–352 (2006).

    Article  ADS  Google Scholar 

  85. de Arcangelis, L. & Herrmann, J. Learning as a phenomenon occurring in a critical state. Proc. Natl Acad. Sci. USA 107, 3977–3981 (2010).

    Article  ADS  Google Scholar 

  86. de Franciscis, S., Torres, J. J. & Marro, J. Unstable dynamics, nonequilibrium phases and criticality in networked excitable media. Phys. Rev. E (in the press); preprint at http://arxiv.org/abs/1007.4675v2 [cond-mat.dis-nn] (2010).

  87. Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple timescales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.R.C. is with the National Research and Technology Council (CONICET) of Argentina. This work was supported by CONICET and by NIH NINDS NS58661. Thanks to E. Tagliazucchi and F. Lebensohn-Chialvo for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante R. Chialvo.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chialvo, D. Emergent complex neural dynamics. Nature Phys 6, 744–750 (2010). https://doi.org/10.1038/nphys1803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing