Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

Abstract

The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2–3. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics, and a growing dynamic correlation length quantifying the extent of correlated particle motion. Here we use a novel numerical method to detect and quantify spatial correlations that reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature, which involves no fitting or indirect theoretical interpretation. These findings impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the static and dynamic properties of the system.
Figure 2: Relaxation time of the bulk and confined system.
Figure 3: Temperature dependence of static and dynamic length scales identified in this work.

Similar content being viewed by others

References

  1. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  Google Scholar 

  2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  Google Scholar 

  3. Binder, K. & Kob, W. Glassy materials and disordered solids 2nd edn (World Scientific, 2011).

    Book  Google Scholar 

  4. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  Google Scholar 

  5. Berthier, L., Biroli, G., Bouchaud, J-P., Cipelletti, L. & van Saarloos, W. (eds) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).

  6. Bennemann, C., Donati, C., Baschnagel, J. & Glotzer, S. C. Growing range of correlated motion in a polymer melt on cooling towards the glass transition. Nature 399, 246–249 (1999).

    Article  ADS  Google Scholar 

  7. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005).

    Article  ADS  Google Scholar 

  8. Dalle-Ferrier, C. et al. Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence. Phys. Rev. E 76, 041510 (2007).

    Article  ADS  Google Scholar 

  9. Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: Bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).

    Article  Google Scholar 

  10. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  11. Xia, X. Y. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. USA 97, 2990–2994 (2000).

    Article  ADS  Google Scholar 

  12. Franz, S. & Montanari, A. Analytic determination of dynamical and mosaic length scales in a Kac glass model. J. Phys. A 40, F251–F257 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kirkpatrick, T. R. & Thirumalai, D. Dynamics of the structural glass transition and the p-spin interaction spin glass model. Phys. Rev. Lett. 58, 2091–2094 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  14. Götze, W. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford Univ. Press, 2008).

    Book  Google Scholar 

  15. Biroli, G. & Bouchaud, J. P. Diverging length scale and upper critical dimension in the mode-coupling theory of the glass transition. Europhys. Lett. 67, 21–27 (2004).

    Article  ADS  Google Scholar 

  16. Biroli, G. & Bouchaud, J-P. in The Random First-Order Transition Theory of Glasses: A Critical Assessment (eds Lubchenko, V. & Wolynes, P. W.) (in the press); preprint at http://arxiv.org/abs/0912.2542.

  17. Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).

    Article  ADS  Google Scholar 

  18. Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behavior of glass-forming liquids. Nature Mater. 9, 324–331 (2010).

    Article  ADS  Google Scholar 

  19. Montanari, A. & Semerjian, G. Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. Bouchaud, J-P. & Biroli, G. On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article  ADS  Google Scholar 

  21. Biroli, G., Bouchaud, J-P., Cavagna, A., Grigera, T. S. & Verrocchio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys. 4, 771–775 (2008).

    Article  ADS  Google Scholar 

  22. Scheidler, P., Kob, W. & Binder, K. Cooperative motion and growing length scales in supercooled confined liquids. Europhys. Lett. 59, 701–707 (2002).

    Article  ADS  Google Scholar 

  23. Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nature Mater. 10, 512–520 (2011).

    Article  ADS  Google Scholar 

  24. Berthier, L. & Witten, T. A. Compressing nearly hard sphere fluids increases glass fragility. Europhys. Lett. 86, 10001 (2009).

    Article  ADS  Google Scholar 

  25. Parisi, G. On the replica scenario for the glass transition. Preprint at http://arxiv.org/abs/0911.2265.

  26. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Phys. 2, 268–274 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Biroli and A. Cavagna for fruitful exchanges about this work. We acknowlege the financial support from the Région Languedoc-Roussillon (L.B.), ANR DYNHET (L.B. and W.K.), and MICINN (Project: MAT2009-13155-C04-02) and Junta de Andalucía (Project: P07-FQM-02496) (S.R-V.). W.K. is a member of the Institut universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

L.B., W.K. and S.R-V. contributed to the computer simulations, the analysis of the data, and the writing of the paper.

Corresponding author

Correspondence to Walter Kob.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nature Phys 8, 164–167 (2012). https://doi.org/10.1038/nphys2133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing