Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of three-dimensional massless Kane fermions in a zinc-blende crystal

Abstract

Solid-state physics and quantum electrodynamics, with its ultrarelativistic (massless) particles, meet in the electronic properties of one-dimensional carbon nanotubes, two-dimensional graphene or topological-insulator surfaces. However, clear experimental evidence for electronic states with a conical dispersion relation in all three dimensions, conceivable for certain bulk materials, is still missing. Here, we study a zinc-blende crystal, HgCdTe, at the point of the semiconductor-to-semimetal topological transition. For this compound, we observe three-dimensional massless electrons, as certified from the dynamical conductivity increasing linearly with the photon frequency, with a velocity of about 106 m s−1. Applying a magnetic field B results in a -dependence of dipole-active inter-Landau-level resonances and spin splitting of Landau levels also following a -dependence—well-established signatures of ultrarelativistic particles but until now not observed experimentally in any solid-state electronic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic band structure of MCT.
Figure 2: Light absorption in MCT at zero magnetic field.
Figure 3: Landau-level fan chart and magneto-absorption spectra of MCT.
Figure 4: Magneto-absorption in MCT.
Figure 5: Low-field magneto-transmission in MCT.

Similar content being viewed by others

References

  1. Charlier, J-C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  4. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  6. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  7. Wan, X., Turner, A. M., Viswanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  8. Yang, K-Y., Lu, Y-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  9. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  10. Steinberg, J. A. et al. Bulk Dirac points in distorted spinels. Preprint at http://arxiv.org/abs/1309.5967 (2013).

  11. Singh, B. et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B 86, 115208 (2012).

    Article  ADS  Google Scholar 

  12. Xu, S-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  ADS  Google Scholar 

  13. Sato, T. et al. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nature Phys. 7, 840–844 (2011).

    Article  ADS  Google Scholar 

  14. Zawadzki, W. Electron transport phenomena in small-gap semiconductors. Adv. Phys. 23, 435–522 (1974).

    Article  ADS  Google Scholar 

  15. Harman, T. C. et al. Low electron effective masses and energy gap in CdxHg1−xTe. Phys. Rev. Lett. 7, 403–405 (1961).

    Article  ADS  Google Scholar 

  16. McCombe, B. D., Wagner, R. & Prinz, G. Infrared pulsed gas laser studies of combined resonance and cyclotron–phonon resonance in Hg1−xCdxTe. Solid State Commun. 8, 1687–1691 (1970).

    Article  ADS  Google Scholar 

  17. Groves, S. H., Harman, T. C. & Pidgeon, C. R. Interband magnetoreflection of Hg1−xCdxTe. Solid State Commun. 9, 451–455 (1971).

    Article  ADS  Google Scholar 

  18. Guldner, Y., Rigaux, C., Mycielski, A. & Couder, Y. Magnetooptical investigation of Hg1−xCdxTe mixed crystals II. Semiconducting configuration and semimetal → semiconductor transition. Phys. Status Solidi 82, 149–158 (1977).

    Article  Google Scholar 

  19. Weiler, M. H. in Defects, (HgCd)Se, (HgCd)Te (eds Willardson, R. K. & Beer, A. C.) 119–191 (Semiconductors and Semimetals, Vol. 16, Elsevier, 1981).

    Book  Google Scholar 

  20. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  21. Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957).

    Article  ADS  Google Scholar 

  22. Novik, E. G. et al. Band structure of semimagnetic Hg1−yMnyTe quantum wells. Phys. Rev. B 72, 035321 (2005).

    Article  ADS  Google Scholar 

  23. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, 1996).

    Book  Google Scholar 

  24. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  25. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).

    Article  ADS  Google Scholar 

  26. Kuzmenko, A. B. et al. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  ADS  Google Scholar 

  27. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  28. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2012).

    Article  ADS  Google Scholar 

  29. Goswami, P. & Chakravarty, S. Quantum criticality between topological and band insulators in 3+1 dimensions. Phys. Rev. Lett. 107, 196803 (2011).

    Article  ADS  Google Scholar 

  30. Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Relativistic Quantum Theory (A Course of Theoretical Physics, Vol. 4, part 1, Pergamon, 1971).

    Google Scholar 

  31. Ashby, P. E. C. & Carbotte, J. P. Magneto-optical conductivity of Weyl semimetals. Phys. Rev. B 87, 245131 (2013).

    Article  ADS  Google Scholar 

  32. Maltz, M. & Dresselhaus, M. S. Magnetoreflection studies in bismuth. Phys. Rev. B 2, 2877–2887 (1970).

    Article  ADS  Google Scholar 

  33. Zhu, Z. et al. Angle-resolved Landau spectrum of electrons and holes in bismuth. Phys. Rev. B 84, 115137 (2011).

    Article  ADS  Google Scholar 

  34. Orlita, M. et al. Dirac fermions at the H point of graphite: Magnetotransmission studies. Phys. Rev. Lett. 100, 136403 (2008).

    Article  ADS  Google Scholar 

  35. Witowski, A. M. et al. Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene. Phys. Rev. B 82, 165305 (2010).

    Article  ADS  Google Scholar 

  36. Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51 (2011).

    Article  ADS  Google Scholar 

  37. Orlita, M. et al. Classical to quantum crossover of the cyclotron resonance in graphene: A study of the strength of intraband absorption. New J. Phys. 14, 095008 (2012).

    Article  ADS  Google Scholar 

  38. Neupane, M. et al. Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2. Preprint at http://arxiv.org/abs/1309.7892 (2013).

  39. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Preprint at http://arxiv.org/abs/1309.7978 (2013).

  40. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Preprint at http://arxiv.org/abs/1310.0391 (2013).

  41. Hass, K. C., Ehrenreich, H. & Velický, B. Electronic structure of Hg1−xCdxTe. Phys. Rev. B 27, 1088–1100 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with T. Brauner, R. Grill, M. Grynberg, A. A. Nersesyan, V. Novák, M. L. Sadowski and W. Zawadzki. The work has been supported by the ERC project MOMB, by EuroMagNET II under the EU Contract No. 228043, by the GDR-I project ‘Semiconductor sources and detectors of THz frequencies’ and by the Scientific Council of Montpellier II University. We also acknowledge the support received from the Ambassade de France en Russie for the French–Russian collaboration and exchange of PhD students.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was proposed by M.O. and M.P.; the underlying theory was formulated by D.M.B. The sample growth was performed by N.N.M. and S.A.D. The sample was characterized by M.S.Z., F.T., W.K. and V.I.G. Magneto-optical experiments were performed by M.O., G.M., M.S.Z., P.N., C.F. and A-L.B. All coauthors discussed the data. M.O., M.P. and D.M.B. wrote the manuscript.

Corresponding authors

Correspondence to M. Orlita or M. Potemski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlita, M., Basko, D., Zholudev, M. et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nature Phys 10, 233–238 (2014). https://doi.org/10.1038/nphys2857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing