Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect

Subjects

Abstract

The spin Hall effect converts charge current to pure spin currents in orthogonal directions in materials that have significant spin–orbit coupling. The efficiency of the conversion is described by the spin Hall angle (SHA). The SHA can most readily be inferred by using the generated spin currents to excite or rotate the magnetization of ferromagnetic films or nano-elements via spin-transfer torques. Some of the largest spin-torque-derived spin Hall angles (ST-SHA) have been reported in platinum. Here we show, using spin-torque ferromagnetic resonance measurements, that the transparency of the Pt–ferromagnet interface to the spin current plays a central role in determining the magnitude of the ST-SHA. We measure a much larger ST-SHA in Pt/cobalt (0.11) compared to Pt/permalloy (0.05) bilayers when the interfaces are assumed to be completely transparent. Taking into account the transparency of these interfaces, as derived from spin-mixing conductances, we find that the intrinsic SHA in platinum has a much higher value of 0.19 ± 0.04 as compared to the ST-SHA. The importance of the interface transparency is further exemplified by the insertion of atomically thin magnetic layers at the Pt/permalloy interface that we show strongly modulates the magnitude of the ST-SHA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ST-FMR measurement of the SHA of Pt in Pt/Py and Pt/Co.
Figure 2: Thickness dependence of ST-SHA for 60 Pt/t Py and 60 Pt/t Co.
Figure 3: Interface transparency of Pt/FM.
Figure 4: ST-SHA and spin-mixing conductances of Pt/Co1−x Nix.
Figure 5: Interface engineering of ST-SHA.

Similar content being viewed by others

References

  1. D’yakonov, M. I. & Perel’, V. I. Possibility of orienting electron spins with current. J. Exp. Theor. Phys. Lett. 13, 467–469 (1971).

    Google Scholar 

  2. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  3. Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000).

    Article  ADS  Google Scholar 

  4. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    Article  ADS  Google Scholar 

  5. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  6. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  ADS  Google Scholar 

  7. Ryu, K-S., Thomas, L., Yang, S-H. & Parkin, S. S. P. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  8. Ryu, K-S., Yang, S-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nature Commun. 5, 3910 (2014).

    Article  ADS  Google Scholar 

  9. Thiaville, A., Rohart, S., Jue, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  ADS  Google Scholar 

  10. Khvalkovskiy, A. V. et al. Matching domain wall configuration and spin–orbit torques for very efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Article  ADS  Google Scholar 

  11. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  ADS  Google Scholar 

  12. Kondou, K., Sukegawa, H., Mitani, S., Tsukagoshi, K. & Kasai, S. Evaluation of spin Hall angle and spin diffusion length by using spin current-induced ferromagnetic resonance. Appl. Phys. Expr. 5, 073002 (2012).

    Article  ADS  Google Scholar 

  13. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  ADS  Google Scholar 

  14. Pai, C-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  ADS  Google Scholar 

  15. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  16. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  ADS  Google Scholar 

  17. Chen, Y-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).

    Article  ADS  Google Scholar 

  18. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet–normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

    Article  ADS  Google Scholar 

  19. Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    Article  ADS  Google Scholar 

  20. Zwierzycki, M., Tserkovnyak, Y., Kelly, P. J., Brataas, A. & Bauer, G. E. W. First-principles study of magnetization relaxation enhancement and spin transfer in thin magnetic films. Phys. Rev. B 71, 064420 (2005).

    Article  ADS  Google Scholar 

  21. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002).

    Article  ADS  Google Scholar 

  22. Jiao, H. & Bauer, G. E. W. Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect. Phys. Rev. Lett. 110, 217602 (2013).

    Article  ADS  Google Scholar 

  23. Ando, K. et al. Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109, 103913 (2011).

    Article  ADS  Google Scholar 

  24. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  ADS  Google Scholar 

  25. Barati, E., Cinal, M., Edwards, D. M. & Umerski, A. Gilbert damping in magnetic layered systems. Phys. Rev. B 90, 014420 (2014).

    Article  ADS  Google Scholar 

  26. Kalarickal, S. S. et al. Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006).

    Article  ADS  Google Scholar 

  27. Czeschka, F. D. et al. Scaling behavior of the spin pumping effect in ferromagnet–platinum bilayers. Phys. Rev. Lett. 107, 046601 (2011).

    Article  ADS  Google Scholar 

  28. Carr, W. J. Intrinsic magnetization in alloys. Phys. Rev. 85, 590–594 (1952).

    Article  ADS  Google Scholar 

  29. Oogane, M. et al. Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45, 3889–3891 (2006).

    Article  ADS  Google Scholar 

  30. Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B 87, 014430 (2013).

    Article  ADS  Google Scholar 

  31. McGuire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  ADS  Google Scholar 

  32. Bailey, W. E. et al. Detection of microwave phase variation in nanometre-scale magnetic heterostructures. Nature Commun. 4, 2025 (2013).

    Article  ADS  Google Scholar 

  33. Parkin, S. S. P. Origin of enhanced magnetoresistance of magnetic multilayers- spin-dependent scattering from magnetic interface states. Phys. Rev. Lett. 71, 1641–1644 (1993).

    Article  ADS  Google Scholar 

  34. Rojas-Sánchez, J. C. et al. Spin pumping and inverse spin Hall effect in platinum: The essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

    Article  ADS  Google Scholar 

  35. Liu, Y., Yuan, Z., Wesselink, R. J. H., Starikov, A. A. & Kelly, P. J. Interface enhancement of Gilbert damping from first principles. Phys. Rev. Lett. 113, 207202 (2014).

    Article  ADS  Google Scholar 

  36. Guo, G. Y., Niu, Q. & Nagaosa, N. Anomalous Nernst and Hall effects in magnetized platinum and palladium. Phys. Rev. B 89, 214406 (2014).

    Article  ADS  Google Scholar 

  37. Levy, P. M. & Mertig, I. in Spin Dependent Transport in Magnetic Nanostructures (eds Maekawa, S. & Shinjo, T.) (Taylor & Francis, 2002).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge help from C. Lada in designing the ST-FMR measurement system and discussions with T. Phung. W. H. also acknowledges support from the 1000 Talents Program for Young Scientists of China and the Collaborative Innovation Center of Quantum Matter, China.

Author information

Authors and Affiliations

Authors

Contributions

W.Z., W.H., X.J. and S.S.P.P. designed the experiments. W.Z. performed the fabrication and measurements of the devices with help from W.H. W.Z., W.H. and X.J. analysed the data. X.J., W.H. and S-H.Y. grew the films. S.S.P.P. proposed and supervised the studies. W.Z., W.H. and S.S.P.P. wrote the manuscript.

Corresponding author

Correspondence to Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Han, W., Jiang, X. et al. Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nature Phys 11, 496–502 (2015). https://doi.org/10.1038/nphys3304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing