Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of the spin-transfer-torque vector in magnetic tunnel junctions

Abstract

The transfer of spin angular momentum from a spin-polarized current to a ferromagnet can generate sufficient torque to reorient the magnet’s moment. This torque could enable the development of efficient electrically actuated magnetic memories and nanoscale microwave oscillators. Yet difficulties in making quantitative measurements of the spin-torque vector have hampered understanding. Here we present direct measurements of both the magnitude and direction of the spin torque in magnetic tunnel junctions, the type of device of primary interest for applications. At low bias V, the differential torque dτ/dV lies in the plane defined by the electrode magnetizations, and its magnitude is in excellent agreement with recent predictions for near-perfect spin-polarized tunnelling. We find that the strength of the in-plane differential torque remains almost constant with increasing bias, despite a substantial decrease in the device magnetoresistance, and that with bias the torque vector also rotates out of the plane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic tunnel junction geometry and magnetic characterization.
Figure 2: ST-FMR spectra at room temperature.
Figure 3: Bias dependence of the spin-transfer torkances and magnetic damping.

Similar content being viewed by others

References

  1. Butler, W. H., Zhang, X. G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  2. Mathon, J. & and Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

    Article  ADS  Google Scholar 

  3. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  ADS  Google Scholar 

  4. Yuasa, S., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  ADS  Google Scholar 

  5. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

    Article  ADS  Google Scholar 

  6. Fuchs, G. D. et al. Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 85, 1205–1207 (2004).

    Article  ADS  Google Scholar 

  7. Hosomi, M. et al. A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-RAM. IEDM Technical Digest, IEEE International 459–462 (5–7 December 2005).

  8. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  9. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  ADS  Google Scholar 

  10. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  ADS  Google Scholar 

  11. Fuchs, G. D. et al. Spin torque, tunnel-current spin polarization, and magnetoresistance in MgO magnetic tunnel junctions. Phys. Rev. Lett. 96, 186603 (2006).

    Article  ADS  Google Scholar 

  12. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    Article  ADS  Google Scholar 

  13. Slonczewski, J. C. Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005).

    Article  ADS  Google Scholar 

  14. Theodonis, I., Kioussis, N., Kalitsov, A., Chshiev, M. & Butler, W. H. Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett. 97, 237205 (2006).

    Article  ADS  Google Scholar 

  15. Levy, P. M. & Fert, A. Spin transfer in magnetic tunnel junctions with hot electrons. Phys. Rev. Lett. 97, 097205 (2006).

    Article  ADS  Google Scholar 

  16. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  ADS  Google Scholar 

  17. Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).

    Article  ADS  Google Scholar 

  18. Slonczewski, J. C. & Sun, J. Z. Theory of voltage-driven current and torque in magnetic tunnel junctions. J. Magn. Magn. Mater. 310, 169–175 (2007).

    Article  ADS  Google Scholar 

  19. Kubota, H. et al. Dependence of spin-transfer switching current on free layer thickness in Co–Fe–B/MgO/Co–Fe–B magnetic tunnel junctions. Appl. Phys. Lett. 89, 032505 (2006).

    Article  ADS  Google Scholar 

  20. Yagami, K., Tulapurkar, A. A., Fukushima, A. & Suzuki, Y. Inspection of intrinsic critical currents for spin-transfer magnetization switching. IEEE Trans. Magn. 41, 2615–2617 (2005).

    Article  ADS  Google Scholar 

  21. Kovalev, A. A., Bauer, G. E. W. & Brataas, A. Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Phys. Rev. B 75, 014430 (2007).

    Article  ADS  Google Scholar 

  22. Kupferschmidt, J. N., Adam, S. & Brouwer, P. W. Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure. Phys. Rev. B 74, 134416 (2006).

    Article  ADS  Google Scholar 

  23. Fuchs, G. D. et al. Adjustable spin torque in magnetic tunnel junctions with two fixed layers. Appl. Phys. Lett. 86, 152509 (2005).

    Article  ADS  Google Scholar 

  24. Zimmler, M. et al. Current-induced effective magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. B 70, 184438 (2004).

    Article  ADS  Google Scholar 

  25. Bilzer, C. et al. Study of the dynamic magnetic properties of soft CoFeB films. J. Appl. Phys. 100, 053903 (2006).

    Article  ADS  Google Scholar 

  26. Ito, K., Devolder, T., Chappert, C., Carey, M. J. & Katine, J. A. Micromagnetic simulation of spin transfer torque switching combined with precessional motion from a hard axis magnetic field. Appl. Phys. Lett. 89, 252509 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Nagamine, D. D. Djayaprawira, N. Watanabe and K. Tsunekawa of Canon ANELVA Corp. for providing the junction thin-film stack we used to fabricate the tunnel-junction devices in this study, and G. D. Fuchs and K. V. Thadani for discussions. J.Z.S. would like to acknowledge discussions with S. Assefa, W. J. Gallagher on sample processing techniques, X. Jiang and S. S. P. Parkin for sample fabrication assistance, M. Rooks and N. Ruiz for e-beam lithography support and the support of the IBM MRAM team as a whole. Cornell acknowledges support from the Office of Naval Research, from the NSF (DMR-0605742) and from the NSF/NSEC program through the Cornell Center for Nanoscale Systems. We also acknowledge NSF support through use of the Cornell Nanofabrication Facility/NNIN and the Cornell Center for Materials Research facilities.

Author information

Authors and Affiliations

Authors

Contributions

The first author played the primary role in making the measurements and analysing the data. J.Z.S. led the sample fabrication. Y.T.C. and J.Z.S. assisted in making measurements. All of the authors contributed to the data analysis and the preparation of the manuscript.

Corresponding author

Correspondence to Daniel C. Ralph.

Supplementary information

Supplementary Information

Supplementary Material and Supplementary Figures S1 – S6 (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankey, J., Cui, YT., Sun, J. et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature Phys 4, 67–71 (2008). https://doi.org/10.1038/nphys783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing