Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcript, protein and metabolite temporal dynamics in the CAM plant Agave

Abstract

Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAM exhibits rescheduled central metabolism and redox homeostasis relative to C3.
Figure 2: Temporal changes in Agave gene expression across the diel cycle.
Figure 3: Diel gene expression and the rescheduling of stomatal movement-related genes in Agave compared with Arabidopsis.
Figure 4: Temporal changes in protein abundances in Agave across the diel cycle.

Similar content being viewed by others

References

  1. Silvera, K. et al. Evolution along the crassulacean acid metabolism continuum. Funct. Plant Biol. 37, 995–1010 (2010).

    Article  CAS  Google Scholar 

  2. Borland, A., Griffiths, H., Hartwell, J. & Smith, J. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J. Exp. Bot. 60, 2879–2896 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. West-Eberhard, M. J., Smith, J. A. C. & Winter, K. Photosynthesis, reorganized. Science 332, 311–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Borland, A. M. et al. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci. 30, 327–338 (2014).

    Article  Google Scholar 

  5. Borland, A. M. & Yang, X. Informing the improvement and biodesign of crassulacean acid metabolism via system dynamics modelling. New Phytol. 200, 946–949 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. DePaoli, H. C., Borland, A. M., Tuskan, G. A., Cushman, J. C. & Yang, X. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. J. Exp. Bot. 65, 3381–3393 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Winter, K., Garcia, M. & Holtum, J. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. J. Exp. Bot. 59, 1829–1840 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Winter, K. & Holtum, J. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J. Exp. Bot. 65, 3425–3441 (2014).

    Article  PubMed  Google Scholar 

  9. Chia, D. W., Yoder, T. J., Reiter, W. D. & Gibson, S. I. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211, 743–751 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Fahnenstich, H. et al. Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C(4)NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiol. 145, 640–652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osmond, C. B. et al. Regulation of malic-acid metabolism in crassulacean-acid-metabolism plants in the dark and light: in-vivo evidence from (13)C-labeling patterns after (13)CO 2 fixation. Planta 175, 184–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Arrizon, J., Morel, S., Gschaedler, A. & Monsan, P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem. 122, 123–130 (2010).

    Article  CAS  Google Scholar 

  13. Mancilla-Margalli, N. & López, M. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem. 54, 7832–7839 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Raveh, E., Wang, N. & Nobel, P. Gas exchange and metabolite fluctuations in green and yellow bands of variegated leaves of the monocotyledonous CAM species Agave americana. Physiol. Plant. 103, 99–106 (1998).

    Article  CAS  Google Scholar 

  15. Wang, N. & Nobel, P. Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol. 116, 709–714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horemans, N., Foyer, C., Potters, G. & Asard, H. Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem. 38, 531–540 (2000).

    Article  CAS  Google Scholar 

  17. Bartoli, C. G. et al. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J. Exp. Bot. 57, 1621–1631 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Dutilleul, C. et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15, 1212–1226 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foyer, C. H. & Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2–18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lai, A. et al. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl Acad. Sci. USA 109, 17129–17134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stangherlin, A. & Reddy, A. Regulation of circadian clocks by redox homeostasis. J. Biol. Chem. 288, 26505–26511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, M. et al. Redox rhythm reinforces the circadian clock to gate immune response. Nature 523, 472–476 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheung, C. Y., Poolman, M. G., Fell, D. A., Ratcliffe, R. G. & Sweetlove, L. J. A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiol. 165, 917–929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lochner, A. et al. Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J. Proteome Res. 10, 5302–5314 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Saeed, A. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Mockler, T. C. et al. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72, 353–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, X. et al. CYCLIN h;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. Plant Physiol. 162, 1030–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inada, S., Ohgishi, M., Mayama, T., Okada, K. & Sakai, T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887–896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tseng, T.-S. & Briggs, W. R. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell 22, 392–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ceusters, J. et al. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. J. Exp. Bot. 65, 3705–3714 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grams, T. & Thiel, S. High light-induced switch from C3-photosynthesis to crassulacean acid metabolism is mediated by UV-A/blue light. J. Exp. Bot. 53, 1475–1483 (2002).

    CAS  PubMed  Google Scholar 

  32. Banerjee, R. & Batschauer, A. Plant blue-light receptors. Planta 220, 498–502 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chater, C. et al. Elevated CO2-induced responses in stomata require ABA and ABA signaling. Curr. Biol. 25, 2709–2716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimoto, M. et al. Arabidopsis HT1 kinase controls stomatal movements in response to CO2 . Nat. Cell Biol. 8, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tian, W. et al. A molecular pathway for CO(2) response in Arabidopsis guard cells. Nat. Commun. 6, 6057 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 17588–17593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie, T. et al. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1. J. Biol. Chem. 287, 794–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Azoulay-Shemer, T. et al. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2-and ABA-induced stomatal closing. Plant J. 83, 567–581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Chen, Z., Zhang, B., Hills, A. & Blatt, M. PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol. 163, 566–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sze, H., Liang, F., Hwang, I., Curran, A. & Harper, J. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 433–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jossier, M. et al. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J. 64, 563–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Zybailov, B., Florens, L. & Washburn, M. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst. 3, 354–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Howe, E., Sinha, R., Schlauch, D. & Quackenbush, J. RNA-Seq analysis in MeV. Bioinformatics 27, 3209–3210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walley, J. W. et al. Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc. Natl Acad. Sci. USA 110, E4808–E4817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christopher, J. & Holtum, J. Patterns of carbohydrate partitioning in the leaves of crassulacean acid metabolism species during deacidification. Plant Physiol. 112, 393–399 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Q. et al. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2, 22–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, C. et al. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13, 715 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Department of Energy Office of Science Genomic Science Program under award number DE-SC0008834. The authors would like to thank R. Giannone and M.A. Cushman for critical review and clarifying comments on the manuscript. This research used resources of the Compute and Data Environment for Science (CADES) and the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy (under contract number DE-AC05-00OR22725).

Author information

Authors and Affiliations

Authors

Contributions

X.Y., G.A.T., P.E.A. and R.L.H. contributed to conception and design of the experiment; P.A., H.Y., A.M.B., S.D.L., H.C.D.P., N.E., R.A. and T.T. contributed to the acquisition of data; and P.A., H.Y., A.B., D.J.W., P.C.J., D.J., T.T. and J.C.C. contributed to data analysis and interpretation; P.A., X.Y., G.T. and A.B. drafted the manuscript and all authors critically revised and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Xiaohan Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Table Legends 1–17, Supplementary Notes, Supplementary References. (PDF 1380 kb)

Supplementary Tables 1–17

Supplementary Tables 1–17. (XLSX 46444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, P., Yin, H., Borland, A. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants 2, 16178 (2016). https://doi.org/10.1038/nplants.2016.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing