Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide

This article has been updated

Abstract

We describe a modification of the DNA extraction method, in which cetyltrimethylammonium bromide (CTAB) is used to extract nucleic acids from plant tissues. In contrast to the original method, the modified CTAB procedure is faster, omits the selective precipitation and CsCl gradient steps, uses less expensive and toxic reagents, requires only inexpensive laboratory equipment and is more readily adapted to high-throughput DNA extraction. This protocol yields approximately 5–30 μg of total DNA from 200 mg of tissue fresh weight, depending on plant species and tissue source. It can be completed in as little as 5–6 h.

Note: In the version of this article initially published online, the name of the coauthor S Krasnyanski was misspelled as S Krasynanski. This error has been corrected in all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow diagram to illustrate the major steps of the modified CTAB DNA isolation protocol.
Figure 2: Electrophoretic and restriction analyses of DNA extracted from leaf tissue of three different plant species.

Similar content being viewed by others

Change history

  • 31 January 2007

    In the version of this article initially published online, the name of the coauthor S Krasnyanski was misspelled as S Krasynanski. This error has been corrected in all versions of the article.

References

  1. Murray, M.G. & Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    Article  CAS  Google Scholar 

  2. Taylor, B. & Powell, A. Isolation of plant DNA and RNA. BRL Focus 4, 4–6 (1982).

    Google Scholar 

  3. Rogers, S.O. & Bendich, A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant-tissues. Plant Mol. Biol. 5, 69–76 (1985).

    Article  CAS  Google Scholar 

  4. Watson, J.C. & Thompson, W.F. Purification and restriction endonuclease analysis of plant nuclear-DNA. Method Enzymol. 118, 57–75 (1986).

    Article  CAS  Google Scholar 

  5. Doyle, J.J. & Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  6. Shen, Y.J. et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol. 135, 1198–1205 (2004).

    Article  CAS  Google Scholar 

  7. Yang, Z.P., Gilbert, J., Fedak, G. & Somers, D.J. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48, 187–196 (2005).

    Article  CAS  Google Scholar 

  8. Jena, K.K., Jeung, J.U., Lee, J.H., Choi, H.C. & Brar, D.S. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 112, 288–297 (2006).

    Article  CAS  Google Scholar 

  9. Feng, D.S., Xia, G.M., Zhao, S.Y. & Chen, F.G. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor. Appl. Genet. 110, 136–144 (2004).

    Article  CAS  Google Scholar 

  10. Mannerlof, M. & Tenning, P. Screening of transgenic plants by multiplex PCR. Plant Mol. Biol. Rep. 15, 38–45 (1997).

    Article  Google Scholar 

  11. Holm, P.B., Olsen, O., Schnorf, M., Brinch-Pedersen, H. & Knudsen, S. Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res. 9, 21–32 (2000).

    Article  CAS  Google Scholar 

  12. Sanan-Mishra, N., Pham, X.H., Sopory, S.K. & Tuteja, N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102, 509–514 (2005).

    Article  CAS  Google Scholar 

  13. Oliveira, A.C. et al. Quantification of Xylella fastidiosa from citrus trees by real-time polymerase chain reaction assay. Phytopathology 92, 1048–1054 (2002).

    Article  Google Scholar 

  14. Brandfass, C. & Karlovsky, P. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiol. 6 (2006).

  15. Ritala, A., Nuutila, A.M., Aikasalo, R., Kauppinen, V. & Tammisola, J. Measuring gene flow in the cultivation of transgenic barley. Crop Sci. 42, 278–285 (2002).

    Article  CAS  Google Scholar 

  16. Foti, N., Onori, R., Donnarumma, E., Santis, B. & Miraglia, M. Real-time PCR multiplex method for the quantification of Roundup Ready soybean in raw material and processed food. Eur. Food Res. Technol. 222, 209–216 (2006).

    Article  CAS  Google Scholar 

  17. Flagel, L. et al. Inexpensive, high throughput microplate format for plant nucleic acid extraction: suitable for multiplex Southern analyses of transgenes. Crop Sci. 45, 1985–1989 (2005).

    Article  CAS  Google Scholar 

  18. Caccavo, F. et al. Geobacter sulfurreducens sp-nov, a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752–3759 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, Q. et al. The cellulosome system of Acetivibrzo cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J. Bacteriol. 185, 4548–4557 (2003).

    Article  CAS  Google Scholar 

  20. Saleh, A.A. & Leslie, J.E. Cephalosporium maydis is a distinct species in the Gaeumannomyces–Harpophora species complex. Mycologia 96, 1294–1305 (2004).

    Article  CAS  Google Scholar 

  21. Thuan, N., Bigirimana, J., Roumen, E., Van Der Straeten, D. & Hofte, M. Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur. J. Plant Pathol. 114, 381–396 (2006).

    Article  CAS  Google Scholar 

  22. Shahjahan, R.M., Hughes, K.J., Leopold, R.A. & DeVault, J.D. Lower incubation temperature increases yield of insect genomic DNA isolated by the CTAB method. Biotechniques 19, 332–334 (1995).

    CAS  PubMed  Google Scholar 

  23. Appelbee, A.J., Frederick, L.M., Heitman, T.L. & Olson, M.E. Prevalence and genotyping of Giardia duodenalis from beef calves in Alberta, Canada. Vet. Parasitol. 112, 289–294 (2003).

    Article  CAS  Google Scholar 

  24. Chiang, Y.C. et al. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Mol. Ecol. 15, 765–779 (2006).

    Article  CAS  Google Scholar 

  25. Shimono, A., Ueno, S., Tsumura, Y. & Washitani, I. Spatial genetic structure links between soil seed banks and above-ground populations of Primula modesta in subalpine grassland. J. Ecol. 94, 77–86 (2006).

    Article  Google Scholar 

  26. Nasrallah, M.E., Liu, P., Sherman-Broyles, S., Boggs, N.A. & Nasrallah, J.B. Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc. Natl. Acad. Sci. USA. 101, 16070–16074 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, P.Y., Tan, H.T.W., Pwee, K.H. & Kumar, P.P. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 37, 566–577 (2004).

    Article  CAS  Google Scholar 

  28. Alonso, J.M. & Ecker, J.R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat. Rev. Genet. 7, 524–536 (2006).

    Article  CAS  Google Scholar 

  29. He, G.M. et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res. 16, 618–626 (2006).

    Article  CAS  Google Scholar 

  30. Ye, J. et al. A simple and efficient method for extracting DNA from old and burned bone. J. Forensic Sci. 49, 754–759 (2004).

    CAS  PubMed  Google Scholar 

  31. Wulff, E.G., Torres, S. & Gonzalez Vigil, E. Protocol for DNA extraction from potato tubers. Plant Mol. Biol. Rep. 20, 187a–187e (2002).

    Article  Google Scholar 

  32. Tel-Zur, N., Abbo, S., Myslabodski, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).

    Article  CAS  Google Scholar 

  33. Cheng, Y.-J., Guo, W.-W., Yi, H.-L., Pang, X.-M. & Deng, X. An efficient protocol for genomic DNA extraction from citrus species. Plant Mol. Biol. Rep. 21, 177a–177g (2003).

    Article  Google Scholar 

  34. Huang, J., Ge, X. & Sun, M. Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. Biotechniques 28, 432–434 (2000).

    Article  Google Scholar 

  35. Sharma, A.D., Gill, P.K. & Singh, P. DNA isolation from dry and fresh samples of polysaccharide-rich plants. Plant Mol. Biol. Rep. 20, 415a–415f (2002).

    Article  Google Scholar 

  36. Yang, H.Y., Nairn, J. & Ozias-Akins, P. Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J. Plant Physiol. 160, 945–952 (2003).

    Article  CAS  Google Scholar 

  37. Puchooa, D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr. J. Biotechnol. 3, 253–255 (2004).

    Article  CAS  Google Scholar 

  38. Bekesiova, I., Nap, J.P. & Mlynarova, L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol. Biol. Rep. 17, 269–277 (1999).

    Article  CAS  Google Scholar 

  39. Stange, C., Prehn, D. & Arce-Johnson, P. Isolation of Pinus radiata Genomic DNA suitable for RAPD analysis. Plant Mol. Biol. Rep. 16, 1–8 (1998).

    Article  Google Scholar 

  40. Pirttila, A.M., Hirsikorpi, M., Kamarainen, T., Jaakola, L. & Hohtola, A. DNA isolation methods for medicinal and aromatic plants. Plant Mol. Biol. Rep. 19, 273a–273f (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Science Foundation (520630 and 524026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, G., Flores-Vergara, M., Krasynanski, S. et al. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1, 2320–2325 (2006). https://doi.org/10.1038/nprot.2006.384

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.384

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing