Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Role of autophagy in cancer

Abstract

Autophagy is a cellular degradation pathway for the clearance of damaged or superfluous proteins and organelles. The recycling of these intracellular constituents also serves as an alternative energy source during periods of metabolic stress to maintain homeostasis and viability. In tumour cells with defects in apoptosis, autophagy allows prolonged survival. Paradoxically, autophagy defects are associated with increased tumorigenesis, but the mechanism behind this has not been determined. Recent evidence suggests that autophagy provides a protective function to limit tumour necrosis and inflammation, and to mitigate genome damage in tumour cells in response to metabolic stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altered capacity for apoptosis and autophagy can dictate cell fate in response to metabolic stress.
Figure 2: Role of apoptosis and autophagy in tumorigenesis.
Figure 3: Application of autophagy modulation to cancer therapy.

Similar content being viewed by others

References

  1. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima, N. Autophagy: process and function. Genes Dev. (in the press)

  3. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, A. et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Colombo, M. I. Autophagy: a pathogen driven process. IUBMB Life 59, 238–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Baehrecke, E. H. Autophagy: dual roles in life and death? Nature Rev. Mol. Cell Biol. 6, 505–510 (2005).

    Article  CAS  Google Scholar 

  12. Debnath, J., Baehrecke, E. H. & Kroemer, G. Does autophagy contribute to cell death? Autophagy 1, 66–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Reef, S. et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol. Cell 22, 463–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karantza-Wadsworth, V. & White, E. Role of autophagy in breast cancer. Autophagy 3, 610–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol. 4, 641–648 (2004).

    Article  CAS  Google Scholar 

  26. Zeh, H. J. 3rd & Lotze, M. T. Addicted to death: invasive cancer and the immune response to unscheduled cell death. J. Immunother. (1997) 28, 1–9 (2005).

    Article  Google Scholar 

  27. Ellerman, J. E. et al. Masquerader: high mobility group box-1 and cancer. Clin. Cancer Res. 13, 2836–2848 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Nelson, D. A. et al. Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev. 18, 2095–2107 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams, J. M. & Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488–496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nature Rev. Cancer 5, 876–885 (2005).

    Article  CAS  Google Scholar 

  33. Degenhardt, K., Sundararajan, R., Lindsten, T., Thompson, C. & White, E. Bax and Bak independently promote cytochrome c release from mitochondria. J. Biol. Chem. 277, 14127–14134 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Tan, T. T. et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7, 227–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  36. Jin, S., DiPaola, R. S., Mathew, R. & White, E. Metabolic catastrophe as a means to cancer cell death. J. Cell Sci. 120, 379–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol. 22 Aug 2007 (doi: 10.1038/nrm2245).

  40. Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491–2502 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 80–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3, 337–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwata, J. et al. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem. 281, 4035–4041 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Monastyrska, I. & Klionsky, D. J. Autophagy in organelle homeostasis: peroxisome turnover. Mol. Aspects Med. 27, 483–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakai, Y., Oku, M., van der Klei, I. J. & Kiel, J. A. Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta 1763, 1767–1775 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Yorimitsu, T. & Klionsky, D. J. Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol. 17, 279–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol. 3, 331–338 (2007).

    Article  CAS  Google Scholar 

  55. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    CAS  PubMed  Google Scholar 

  59. Aguirre-Ghiso, J. A. The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5, 1740–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Jin, S. & White, E. Role of autophagy in cancer: management of metabolic stress. Autophagy 3, 28–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. & Thompson, C. B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Mathew, R. & White, E. Why sick cells produce tumors: the protective role of autophagy. Autophagy 3, 502–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carew, J. S. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110, 313–322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, W. X. et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am. J. Pathol. 171, 513–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Roccaro, A. M. et al. Bortezomib as an antitumor agent. Curr. Pharm. Biotechnol. 7, 441–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nature Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  Google Scholar 

  77. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lotze, M. T., Deisseroth, A. & Rubartelli, A. Damage associated molecular pattern molecules. Clin. Immunol. 124, 1–4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the White laboratory is supported by grants from the National Institutes of Health and the Department of Defense. We thank T. Sharkey for assistance with preparation of the manuscript, the members of the White laboratory and our collaborators for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat Rev Cancer 7, 961–967 (2007). https://doi.org/10.1038/nrc2254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing