Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Devices in the management of advanced, chronic heart failure

Abstract

Heart failure (HF) is a global phenomenon, and the overall incidence and prevalence of the condition are steadily increasing. Medical therapies have proven efficacious, but only a small number of pharmacological options are in development. When patients cease to respond adequately to optimal medical therapy, cardiac resynchronization therapy has been shown to improve symptoms, reduce hospitalizations, promote reverse remodelling, and decrease mortality. However, challenges remain in identifying the ideal recipients for this therapy. The field of mechanical circulatory support has seen immense growth since the early 2000s, and left ventricular assist devices (LVADs) have transitioned over the past decade from large, pulsatile devices to smaller, more-compact, continuous-flow devices. Infections and haematological issues are still important areas that need to be addressed. Whereas LVADs were once approved only for 'bridge to transplantation', these devices are now used as destination therapy for critically ill patients with HF, allowing these individuals to return to the community. A host of novel strategies, including cardiac contractility modulation, implantable haemodynamic-monitoring devices, and phrenic and vagus nerve stimulation, are under investigation and might have an impact on the future care of patients with chronic HF.

Key Points

  • Cardiac resynchronization therapy (CRT) has evolved as an effective therapy for many patients with chronic heart failure, especially those with left bundle branch block

  • CRT device optimization remains challenging, and is an area of intense investigation

  • Left ventricular assist devices can serve as a bridge to cardiac transplantation or destination therapy for critically ill patients with heart failure, and the use of the latest devices has increased patient survival

  • Physicians must be aware of various complex issues, including haematological and infectious concerns, when treating patients with chronic heart failure

  • Several novel, investigational devices for chronic heart failure are on the horizon and hold substantial promise to improve patient outcomes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRT lead placement.
Figure 2: Designs of LVADs.
Figure 3: The positioning of the HVAD® pump (HeartWare, Inc., Miami Lakes, FL, USA) within the pericardial space.

Similar content being viewed by others

References

  1. Roger, V. L. et al. Heart disease and stroke statistics: 2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    PubMed  Google Scholar 

  2. Mosterd, A. & Hoes, A. W. Clinical epidemiology of heart failure. Heart 93, 1137–1146 (2007).

    PubMed  PubMed Central  Google Scholar 

  3. Lloyd-Jones, D. M. et al. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 106, 3068–3072 (2002).

    PubMed  Google Scholar 

  4. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

  5. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 145–153 (2000).

  6. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

  7. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

  8. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    CAS  PubMed  Google Scholar 

  9. Poole-Wilson, P. et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7–13 (2003).

    CAS  PubMed  Google Scholar 

  10. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  11. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    CAS  PubMed  Google Scholar 

  12. Cohn, J. N. & Tognoni, G. for the Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    CAS  PubMed  Google Scholar 

  13. McMurray, J. J. V. et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 362, 767–771 (2003).

    CAS  PubMed  Google Scholar 

  14. Ross, J. S. et al. Recent national trends in readmission rates after heart failure hospitalization. Circ. Heart Fail. 3, 97–103 (2010).

    PubMed  Google Scholar 

  15. Chen, J., Normand, S. L., Wang, Y. & Krumholz, H. M. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998–2008. JAMA 306, 1669–1678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jencks, S. F., Williams, M. V. & Coleman, E. A. Rehospitalizations among patients in the Medicare fee-for-service program. N. Engl. J. Med. 360, 1418–1428 (2009).

    CAS  PubMed  Google Scholar 

  17. Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).

    PubMed  Google Scholar 

  18. Smith, S. A. & Abraham, W. T. Device therapy in advanced heart failure: what to put in and what to turn off. Remote telemonitoring and implantable hemodynamic devices for advanced heart failure monitoring in the ambulatory setting and the evolving role of cardiac resynchronization therapy. Congest. Heart Fail. 17, 220–226 (2011).

    PubMed  Google Scholar 

  19. Grines, C. L. et al. Functional abnormalities in isolated left bundle branch block: the effect of interventricular asynchrony. Circulation 79, 845–853 (1989).

    CAS  PubMed  Google Scholar 

  20. Wilensky, R. L. et al. Serial electrocardiographic changes in idiopathic dilated cardiomyopathy confirmed at necropsy. Am. J. Cardiol. 62, 276–283 (1988).

    CAS  PubMed  Google Scholar 

  21. Shamim, W. et al. Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int. J. Cardiol. 70, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  22. Cazeau, S. et al. Four chamber pacing in dilated cardiomyopathy. Pacing Clin. Electrophysiol. 17, 1974–1979 (1994).

    CAS  PubMed  Google Scholar 

  23. Leclercq, C. et al. Acute hemodynamic effects of biventricular DDD pacing in patients with end-stage heart failure. J. Am. Coll. Cardiol. 32, 1825–1831 (1998).

    CAS  PubMed  Google Scholar 

  24. Kass, D. A. et al. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 99, 1567–1573 (1999).

    CAS  PubMed  Google Scholar 

  25. Auricchio, A. et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. Circulation 99, 2993–3001 (1999).

    CAS  PubMed  Google Scholar 

  26. Daubert, J. C. et al. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin. Electrophysiol. 21, 239–245 (1998).

    CAS  PubMed  Google Scholar 

  27. Cazeau, S. et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N. Engl. J. Med. 344, 873–880 (2001).

    CAS  PubMed  Google Scholar 

  28. Abraham, W. T. et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002).

    PubMed  Google Scholar 

  29. Yu, C. M. et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112, 1580–1586 (2005).

    PubMed  Google Scholar 

  30. St John Sutton, M. G. et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107, 1985–1990 (2003).

    PubMed  Google Scholar 

  31. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    PubMed  Google Scholar 

  32. Young, J. B. et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial. JAMA 289, 2685–2694 (2003).

    PubMed  Google Scholar 

  33. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    CAS  PubMed  Google Scholar 

  34. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    CAS  PubMed  Google Scholar 

  35. Vardas, P. E. et al. Guidelines for cardiac pacing and cardiac resynchronization therapy: the Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology: developed in collaboration with the European Heart Rhythm Association. Europace 9, 959–998 (2007).

    PubMed  Google Scholar 

  36. Steendijk, P. et al. Hemodynamic effects of long-term cardiac resynchronization therapy: analysis by pressure-volume loops. Circulation 113, 1295–1304 (2006).

    PubMed  Google Scholar 

  37. Mullens, W. et al. Persistent hemodynamic benefits of cardiac resynchronization therapy with disease progression in advanced heart failure. J. Am. Coll. Cardiol. 53, 600–607 (2009).

    PubMed  Google Scholar 

  38. Lindenfeld, J. et al. Effects of cardiac resynchronization therapy with or without a defibrillator on survival and hospitalizations in patients with New York Heart Association class IV heart failure. Circulation 115, 204–212 (2007).

    PubMed  Google Scholar 

  39. Anand, I. S. et al. Cardiac resynchronization therapy reduces the risk of hospitalizations in patients with advanced heart failure: results from the Comparison Of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) trial. Circulation 119, 969–977 (2009).

    PubMed  Google Scholar 

  40. van Bommel, R. J. et al. Effect of cardiac resynchronization therapy in patients with New York Heart Association functional class IV heart failure. Am. J. Cardiol. 106, 1146–1151 (2010).

    PubMed  Google Scholar 

  41. Vidal, B. et al. Decreased likelihood of response to cardiac resynchronization in patients with severe heart failure. Eur. J. Heart Fail. 12, 283–287 (2010).

    PubMed  Google Scholar 

  42. McAlister, F. A. et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA 297, 2502–2514 (2007).

    CAS  PubMed  Google Scholar 

  43. Abraham, W. T. et al. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. Circulation 110, 2864–2868 (2004).

    PubMed  Google Scholar 

  44. Bleeker, G. B. et al. Cardiac resynchronization therapy in patients with systolic left ventricular dysfunction and symptoms of mild heart failure secondary to ischemic or nonischemic cardiomyopathy. Am. J. Cardiol. 98, 230–235 (2006).

    PubMed  Google Scholar 

  45. Linde, C. et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 52, 1834–1843 (2008).

    PubMed  Google Scholar 

  46. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    PubMed  Google Scholar 

  47. US Department of Health & Human Sciences: FDA. Summary of safety and effectiveness data (SSED) [online], (2010).

  48. Zareba, W. et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial—Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 123, 1061–1072 (2011).

    PubMed  Google Scholar 

  49. Sipahi, I., Carrigan, T. P., Rowland, D. Y., Stambler, B. S. & Fang, J. C. Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Arch. Intern. Med. 171, 1454–1462 (2011).

    PubMed  Google Scholar 

  50. Tang, A. S. et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385–2395 (2010).

    CAS  PubMed  Google Scholar 

  51. US Department of Health & Human Sciences: FDA. Summary of safety and effectiveness data (SSED) [online], (2012).

  52. Goldenberg, I. et al. Reduction of the risk of recurring heart failure events with cardiac resynchronization therapy. J. Am. Coll. Cardiol. 58, 729–737 (2011).

    PubMed  Google Scholar 

  53. Barsheshet, A. et al. Response to preventive cardiac resynchronization therapy in patients with ischaemic and nonischaemic cardiomyopathy in MADIT-CRT. Eur. Heart J. 32, 1622–1630 (2011).

    PubMed  Google Scholar 

  54. Versteeg, H. et al. Effect of cardiac resynchronization therapy-defibrillator implantation on health status in patients with mild versus moderate symptoms of heart failure. Am. J. Cardiol. 108, 1155–1159 (2011).

    PubMed  Google Scholar 

  55. Adabag, S., Roukoz, H., Anand, I. S. & Moss, A. J. Cardiac resynchronization therapy in patients with minimal heart failure. J. Am. Coll. Cardiol. 58, 935–941 (2011).

    PubMed  Google Scholar 

  56. Gold, M. R., Linde, C., Abraham, W. T., Gardiwal, A. & Daubert, J. C. The impact of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in mild heart failure. Heart Rhythm 8, 679–684 (2011).

    PubMed  Google Scholar 

  57. Al-Majed, N. S., McAlister, F. A., Bakal, J. A. & Ezekowitz, J. A. Meta-analysis: cardiac resynchronization therapy for patients with less symptomatic heart failure. Ann. Intern. Med. 154, 401–412 (2011).

    PubMed  Google Scholar 

  58. Bank, A. J., Rischall, A., Gage, R. M., Burns, K. V. & Kubo, S. H. Comparison of cardiac resynchronization therapy outcomes in patients with New York Heart Association functional class I/II versus III/IV heart failure. J. Card. Fail. 18, 373–378 (2012).

    PubMed  Google Scholar 

  59. Perry, R., De Pasquale, C. G., Chew, D. P., Aylward, P. E. & Joseph, M. X. QRS duration alone misses cardiac dyssynchrony in a substantial proportion of patients with chronic heart failure. J. Am. Soc. Echocardiogr. 19, 1257–1263 (2006).

    PubMed  Google Scholar 

  60. Achilli, A. et al. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and “narrow” QRS. J. Am. Coll. Cardiol. 42, 2117–2124 (2003).

    PubMed  Google Scholar 

  61. Yu, C. M. et al. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J. Am. Coll. Cardiol. 48, 2251–2257 (2006).

    PubMed  Google Scholar 

  62. Bleeker, G. B. et al. Cardiac resynchronization therapy in patients with a narrow QRS complex. J. Am. Coll. Cardiol. 48, 2243–2250 (2006).

    PubMed  Google Scholar 

  63. Beshai, J. F. et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N. Engl. J. Med. 357, 2461–2471 (2007).

    CAS  PubMed  Google Scholar 

  64. Foley, P. W. et al. Cardiac resynchronisation therapy in patients with heart failure and a normal QRS duration: the RESPOND study. Heart 97, 1041–1047 (2011).

    PubMed  Google Scholar 

  65. Williams, L. K. et al. Short-term hemodynamic effects of cardiac resynchronization therapy in patients with heart failure, a narrow QRS duration, and no dyssynchrony. Circulation 120, 1687–1694 (2009).

    PubMed  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  67. Auricchio, A. et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J. Am. Coll. Cardiol. 42, 2109–2116 (2003).

    PubMed  Google Scholar 

  68. Byrne, M. J. et al. Diminished left ventricular dyssynchrony and impact of resynchronization in failing hearts with right versus left bundle branch block. J. Am. Coll. Cardiol. 50, 1484–1490 (2007).

    PubMed  Google Scholar 

  69. Bilchick, K. C., Kamath, S., DiMarco, J. P. & Stukenborg, G. J. Bundle-branch block morphology and other predictors of outcome after cardiac resynchronization therapy in Medicare patients. Circulation 122, 2022–2030 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Stevenson, W. G. et al. Indications for cardiac resynchronization therapy: 2011 update from the Heart Failure Society of America Guideline Committee. J. Card. Fail. 18, 94–106 (2012).

    PubMed  Google Scholar 

  71. Patel, J. B. et al. Mitral regurgitation in patients with advanced systolic heart failure. J. Card. Fail. 10, 285–291 (2004).

    PubMed  Google Scholar 

  72. Smith, S. A., Waggoner, A. D., de las Fuentes, L. & Davila-Roman, V. G. Role of serotoninergic pathways in drug-induced valvular heart disease and diagnostic features by echocardiography. J. Am. Soc. Echocardiogr. 22, 883–889 (2009).

    PubMed  Google Scholar 

  73. Otsuji, Y. et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96, 1999–2008 (1997).

    CAS  PubMed  Google Scholar 

  74. McKay, R. G. et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74, 693–702 (1986).

    CAS  PubMed  Google Scholar 

  75. Yiu, S. F., Enriquez-Sarano, M., Tribouilloy, C., Seward, J. B. & Tajik, A. J. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation 102, 1400–1406 (2000).

    CAS  PubMed  Google Scholar 

  76. Breithardt, O. A. et al. Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J. Am. Coll. Cardiol. 41, 765–770 (2003).

    PubMed  Google Scholar 

  77. Ypenburg, C. et al. Mechanism of improvement in mitral regurgitation after cardiac resynchronization therapy. Eur. Heart J. 29, 757–765 (2008).

    PubMed  Google Scholar 

  78. Vinereanu, D. et al. Mechanisms of reduction of mitral regurgitation by cardiac resynchronization therapy. J. Am. Soc. Echocardiogr. 20, 54–62 (2007).

    PubMed  Google Scholar 

  79. Ypenburg, C. et al. Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J. Am. Coll. Cardiol. 50, 2071–2077 (2007).

    PubMed  Google Scholar 

  80. Boriani, G. et al. Impact of mitral regurgitation on the outcome of patients treated with CRT-D: data from the InSync ICD Italian Registry. Pacing Clin. Electrophysiol. 35, 146–154 (2012).

    PubMed  Google Scholar 

  81. Verhaert, D. et al. Impact of mitral regurgitation on reverse remodeling and outcome in patients undergoing cardiac resynchronization therapy. Circ. Cardiovasc. Imaging 5, 21–26 (2012).

    PubMed  Google Scholar 

  82. Ukkonen, H. et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation 107, 28–31 (2003).

    CAS  PubMed  Google Scholar 

  83. Lindner, O. et al. Effect of cardiac resynchronization therapy on global and regional oxygen consumption and myocardial blood flow in patients with non-ischaemic and ischaemic cardiomyopathy. Eur. Heart J. 26, 70–76 (2005).

    PubMed  Google Scholar 

  84. Lindner, O. et al. Global and regional myocardial oxygen consumption and blood flow in severe cardiomyopathy with left bundle branch block. Eur. J. Heart Fail. 7, 225–230 (2005).

    PubMed  Google Scholar 

  85. Nowak, B. et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J. Am. Coll. Cardiol. 41, 1523–1528 (2003).

    PubMed  Google Scholar 

  86. Weber, K. T. & Brilla, C. G. Pathological hypertrophy and cardiac interstitium: fibrosis and renin–angiotensin–aldosterone system. Circulation 83, 1849–1865 (1991).

    CAS  PubMed  Google Scholar 

  87. Weber, K. T. et al. Pathologic hypertrophy with fibrosis: the structural basis for myocardial failure. Blood Press. 1, 75–85 (1992).

    CAS  PubMed  Google Scholar 

  88. Weber, K. T. et al. Remodeling and reparation of the cardiovascular system. J. Am. Coll. Cardiol. 20, 3–16 (1992).

    CAS  PubMed  Google Scholar 

  89. D'Ascia, C., Cittadini, A., Monti, M. G., Riccio, G. & Sacca, L. Effects of biventricular pacing on interstitial remodelling, tumor necrosis factor-α expression, and apoptotic death in failing human myocardium. Eur. Heart J. 27, 201–206 (2006).

    PubMed  Google Scholar 

  90. Umar, S. et al. Myocardial collagen metabolism in failing hearts before and during cardiac resynchronization therapy. Eur. J. Heart Fail. 10, 878–883 (2008).

    CAS  PubMed  Google Scholar 

  91. Garcia-Bolao, I. et al. Impact of collagen type I turnover on the long-term response to cardiac resynchronization therapy. Eur. Heart J. 29, 898–906 (2008).

    PubMed  Google Scholar 

  92. Orrego, C. M. et al. Cellular evidence of reverse cardiac remodeling induced by cardiac resynchronization therapy. Congest. Heart Fail. 17, 140–146 (2011).

    PubMed  Google Scholar 

  93. Iyengar, S. et al. Effect of cardiac resynchronization therapy on myocardial gene expression in patients with nonischemic dilated cardiomyopathy. J. Card. Fail. 13, 304–311 (2007).

    CAS  PubMed  Google Scholar 

  94. Vanderheyden, M. et al. Endomyocardial upregulation of β1 adrenoreceptor gene expression and myocardial contractile reserve following cardiac resynchronization therapy. J. Card. Fail. 14, 172–178 (2008).

    CAS  PubMed  Google Scholar 

  95. Vanderheyden, M. et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J. Am. Coll. Cardiol. 51, 129–136 (2008).

    CAS  PubMed  Google Scholar 

  96. Barth, A. S. et al. Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level. Circ. Cardiovasc. Genet. 2, 371–378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Higgins, S. L. et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J. Am. Coll. Cardiol. 42, 1454–1459 (2003).

    PubMed  Google Scholar 

  98. Bax, J. J. et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 44, 1834–1840 (2004).

    PubMed  Google Scholar 

  99. Chung, E. S. et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008).

    PubMed  Google Scholar 

  100. Hsu, J. C. et al. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome. J. Am. Coll. Cardiol. 59, 2366–2373 (2012).

    PubMed  Google Scholar 

  101. Arshad, A. et al. Cardiac resynchronization therapy is more effective in women than in men. J. Am. Coll. Cardiol. 57, 813–820 (2011).

    PubMed  Google Scholar 

  102. van Bommel, R. J. et al. Site of latest activation in patients eligible for cardiac resynchronization therapy: patterns of dyssynchrony among different QRS configurations and impact of heart failure etiology. Am. Heart J. 161, 1060–1066 (2011).

    PubMed  Google Scholar 

  103. Delgado, V. et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123, 70–78 (2011).

    PubMed  Google Scholar 

  104. Singh, J. P. et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation 123, 1159–1166 (2011).

    PubMed  Google Scholar 

  105. Taha, N. et al. Biventricular pacemaker optimization guided by comprehensive echocardiography—preliminary observations regarding the effects on systolic and diastolic ventricular function and third heart sound. J. Am. Soc. Echocardiogr. 23, 857–866 (2010).

    PubMed  Google Scholar 

  106. Mullens, W. et al. Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J. Am. Coll. Cardiol. 53, 765–773 (2009).

    PubMed  Google Scholar 

  107. Hayes, D. L. et al. Cardiac resynchronization therapy and the relationship of percent biventricular pacing to symptoms and survival. Heart Rhythm 8, 1469–1475 (2011).

    PubMed  Google Scholar 

  108. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  109. Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth Adult Heart Transplant Report—2011. J. Heart Lung Transplant. 30, 1078–1094 (2011).

    PubMed  Google Scholar 

  110. Dennis, C. et al. Clinical use of a cannula for left heart bypass without thoracotomy: experimental protection against fibrillation by left heart bypass. Ann. Surg. 156, 623–637 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. DeVries, W. C. et al. Clinical use of the total artificial heart. N. Engl. J. Med. 310, 273–278 (1984).

    CAS  PubMed  Google Scholar 

  112. Portner, P. M. et al. Implantable electrical left ventricular assist system: bridge to transplantation and the future. Ann. Thorac. Surg. 47, 142–150 (1989).

    CAS  PubMed  Google Scholar 

  113. Frazier, O. H. et al. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann. Thorac. Surg. 53, 1080–1090 (1992).

    CAS  PubMed  Google Scholar 

  114. US Department of Health & Human Sciences: FDA. Medical devices: 1994 PMA approvals [online], (2010).

  115. Oz, M. C., Goldstein, D. J. & Rose, E. A. Preperitoneal placement of ventricular assist devices: an illustrated stepwise approach. J. Card. Surg. 10, 288–294 (1995).

    CAS  PubMed  Google Scholar 

  116. McCarthy, P. M. & Sabik, J. F. Implantable circulatory support devices as a bridge to heart transplantation. Semin. Thorac. Cardiovasc. Surg. 6, 174–180 (1994).

    CAS  PubMed  Google Scholar 

  117. Goldstein, D. J., Oz, M. C. & Rose, E. A. Implantable left ventricular assist devices. N. Engl. J. Med. 339, 1522–1533 (1998).

    CAS  PubMed  Google Scholar 

  118. Slater, J. P. et al. Low thromboembolic risk without anticoagulation using advanced-design left ventricular assist devices. Ann. Thorac. Surg. 62, 1321–1327 (1996).

    CAS  PubMed  Google Scholar 

  119. Frazier, O. H. et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J. Thorac. Cardiovasc. Surg. 122, 1186–1195 (2001).

    CAS  PubMed  Google Scholar 

  120. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    CAS  PubMed  Google Scholar 

  121. Dembitsky, W. P. et al. Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial. Ann. Thorac. Surg. 78, 2123–2129 (2004).

    PubMed  Google Scholar 

  122. Dowling, R. D. et al. HeartMate VE LVAS design enhancements and its impact on device reliability. Eur. J. Cardiothorac. Surg. 25, 958–963 (2004).

    CAS  PubMed  Google Scholar 

  123. Caccamo, M., Eckman, P. & John, R. Current state of ventricular assist devices. Curr. Heart Fail. Rep. 8, 91–98 (2011).

    PubMed  Google Scholar 

  124. Asama, J., Shinshi, T., Hoshi, H., Takatani, S. & Shimokohbe, A. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller. Artif. Organs 30, 160–167 (2006).

    PubMed  Google Scholar 

  125. Takatani, S. Progress of rotary blood pumps: presidential address, International Society for Rotary Blood Pumps 2006, Leuven, Belgium. Artif. Organs 31, 329–344 (2007).

    PubMed  Google Scholar 

  126. Miller, L. W. et al. Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357, 885–896 (2007).

    CAS  PubMed  Google Scholar 

  127. Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009).

    CAS  PubMed  Google Scholar 

  128. Kirklin, J. K. et al. The fourth INTERMACS annual report: 4,000 implants and counting. J. Heart Lung Transplant. 31, 117–126 (2012).

    PubMed  Google Scholar 

  129. Pagani, F. D. et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J. Am. Coll. Cardiol. 54, 312–321 (2009).

    PubMed  Google Scholar 

  130. Kormos, R. L. et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 139, 1316–1324 (2010).

    PubMed  Google Scholar 

  131. Lee, S. et al. Effects of the HeartMate II continuous-flow left ventricular assist device on right ventricular function. J. Heart Lung Transplant. 29, 209–215 (2010).

    PubMed  Google Scholar 

  132. Klotz, S., Naka, Y., Oz, M. C. & Burkhoff, D. Biventricular assist device-induced right ventricular reverse structural and functional remodeling. J. Heart Lung Transplant. 24, 1195–1201 (2005).

    PubMed  Google Scholar 

  133. Morgan, J. A., John, R., Lee, B. J., Oz, M. C. & Naka, Y. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann. Thorac. Surg. 77, 859–863 (2004).

    PubMed  Google Scholar 

  134. Rogers, J. G. et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J. Am. Coll. Cardiol. 55, 1826–1834 (2010).

    PubMed  Google Scholar 

  135. Kirklin, J. K. et al. INTERMACS database for durable devices for circulatory support: first annual report. J. Heart Lung Transplant. 27, 1065–1072 (2008).

    PubMed  Google Scholar 

  136. Kirklin, J. K. et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J. Heart Lung Transplant. 29, 1–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  137. Wieselthaler, G. M. et al. Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J. Heart Lung Transplant. 29, 1218–1225 (2010).

    PubMed  Google Scholar 

  138. Strueber, M. et al. Multicenter evaluation of an intrapericardial left ventricular assist system. J. Am. Coll. Cardiol. 57, 1375–1382 (2011).

    PubMed  Google Scholar 

  139. Aaronson, K. D. et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 125, 3191–3200 (2012).

    PubMed  Google Scholar 

  140. Letsou, G. V. et al. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. J. Heart Lung Transplant. 24, 105–109 (2005).

    PubMed  Google Scholar 

  141. Hetzer, R. et al. First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur. J. Cardiothorac. Surg. 25, 964–970 (2004).

    PubMed  Google Scholar 

  142. Morgan, J. A. et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 31, 715–718 (2012).

    PubMed  Google Scholar 

  143. Stern, D. R. et al. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J. Card. Surg. 25, 352–356 (2010).

    PubMed  Google Scholar 

  144. Demirozu, Z. T. et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 30, 849–853 (2011).

    PubMed  Google Scholar 

  145. Uriel, N. et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J. Am. Coll. Cardiol. 56, 1207–1213 (2010).

    PubMed  Google Scholar 

  146. Tsai, H. M., Sussman, I. I. & Nagel, R. L. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 83, 2171–2179 (1994).

    CAS  PubMed  Google Scholar 

  147. Klovaite, J., Gustafsson, F., Mortensen, S. A., Sander, K. & Nielsen, L. B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J. Am. Coll. Cardiol. 53, 2162–2167 (2009).

    CAS  PubMed  Google Scholar 

  148. Heilmann, C. et al. Acquired von Willebrand syndrome is an early-onset problem in ventricular assist device patients. Eur. J. Cardiothorac. Surg. 40, 1328–1333 (2011).

    PubMed  Google Scholar 

  149. Vincentelli, A. et al. Acquired von Willebrand syndrome in aortic stenosis. N. Engl. J. Med. 349, 343–349 (2003).

    PubMed  Google Scholar 

  150. John, R. et al. Low thromboembolic risk for patients with the HeartMate II left ventricular assist device. J. Thorac. Cardiovasc. Surg. 136, 1318–1323 (2008).

    PubMed  Google Scholar 

  151. Boyle, A. J. et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J. Heart Lung Transplant. 28, 881–887 (2009).

    PubMed  Google Scholar 

  152. Chaudhary, K. W. et al. Altered myocardial Ca2+ cycling after left ventricular assist device support in the failing human heart. J. Am. Coll. Cardiol. 44, 837–845 (2004).

    CAS  PubMed  Google Scholar 

  153. Ogletree, M. L. et al. Duration of left ventricular assist device support: effects on abnormal calcium cycling and functional recovery in the failing human heart. J. Heart Lung Transplant. 29, 554–561 (2010).

    PubMed  Google Scholar 

  154. Heerdt, P. M. et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102, 2713–2719 (2000).

    CAS  PubMed  Google Scholar 

  155. Hall, J. L. et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J. Am. Coll. Cardiol. 57, 641–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Blaxall, B. C., Tschannen-Moran, B., Milano, C. A. & Koch, W. J. Differential gene expression and genomic patient stratification following left ventricular assist device support. J. Am. Coll. Cardiol. 41, 1096–1106 (2003).

    CAS  PubMed  Google Scholar 

  157. Ambardekar, A. V. & Buttrick, P. M. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects. Circ. Heart Fail. 4, 224–233 (2011).

    PubMed  PubMed Central  Google Scholar 

  158. Maybaum, S. et al. Cardiac improvement during mechanical circulatory support. Circulation 115, 2497–2505 (2007).

    PubMed  Google Scholar 

  159. Radovancevic, B. et al. End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J. Heart Lung Transplant. 26, 815–818 (2007).

    PubMed  Google Scholar 

  160. Kamdar, F. et al. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J. Heart Lung Transplant. 28, 352–359 (2009).

    PubMed  Google Scholar 

  161. Refaat, M. M. et al. Survival benefit of implantable cardioverter-defibrillators in left ventricular assist device-supported heart failure patients. J. Card. Fail. 18, 140–145 (2012).

    PubMed  Google Scholar 

  162. Slaughter, M. S. et al. HeartWare miniature axial-flow ventricular assist device: design and initial feasibility test. Tex. Heart Inst. J. 36, 12–16 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. John, R., Mantz, K., Eckman, P., Rose, A. & May-Newman, K. Aortic valve pathophysiology during left ventricular assist device support. J. Heart Lung Transplant. 29, 1321–1329 (2010).

    PubMed  Google Scholar 

  164. Mancini, D. M. et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 98, 2383–2389 (1998).

    CAS  PubMed  Google Scholar 

  165. Birks, E. J. et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355, 1873–1884 (2006).

    CAS  PubMed  Google Scholar 

  166. Birks, E. J. et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123, 381–390 (2011).

    CAS  PubMed  Google Scholar 

  167. Lamarche, Y. et al. Successful weaning and explantation of the HeartMate II left ventricular assist device. Can. J. Cardiol. 27, 358–362 (2011).

    PubMed  Google Scholar 

  168. Kadish, A. et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am. Heart J. 161, 329–337. e1–2 (2011).

    PubMed  Google Scholar 

  169. Abraham, W. T. et al. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J. Card. Fail. 17, 710–717 (2011).

    PubMed  Google Scholar 

  170. Mazzaferri, E. L. Jr et al. Percutaneous left ventricular partitioning in patients with chronic heart failure and a prior anterior myocardial infarction: results of the PercutAneous Ventricular RestorAtion in Chronic Heart failUre PaTiEnts Trial. Am. Heart J. 163, 812–820.e1 (2012).

    PubMed  Google Scholar 

  171. Ponikowski, P. et al. Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure. Eur. Heart J. 33, 889–894 (2012).

    PubMed  Google Scholar 

  172. Hayward, C. S. et al. Chronic extra-aortic balloon counterpulsation: first-in-human pilot study in end-stage heart failure. J. Heart Lung Transplant. 29, 1427–1432 (2010).

    PubMed  Google Scholar 

  173. Anker, S. D., Koehler, F. & Abraham, W. T. Telemedicine and remote management of patients with heart failure. Lancet 378, 731–739 (2011).

    PubMed  Google Scholar 

  174. Dipla, K. et al. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ. Res. 84, 435–444 (1999).

    CAS  PubMed  Google Scholar 

  175. Burkoff, D. et al. Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail. Rev. 6, 27–34 (2001).

    Google Scholar 

  176. Pappone, C. et al. First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J. Cardiovasc. Electrophysiol. 15, 418–427 (2004).

    PubMed  Google Scholar 

  177. Mortara, A. et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications Circulation 96, 3450–3458 (1997).

    CAS  PubMed  Google Scholar 

  178. De Ferrari, G. M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. A. Smith researched data for the article. Both authors discussed its content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to William T. Abraham.

Ethics declarations

Competing interests

W. T. Abraham is or has been a consultant for the following companies: Biotronik, Medtronic, and St Jude Medical. S. A. Smith declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, W., Smith, S. Devices in the management of advanced, chronic heart failure. Nat Rev Cardiol 10, 98–110 (2013). https://doi.org/10.1038/nrcardio.2012.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing