Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets

Key Points

  • Herpesviruses cause a variety of important diseases. Although the current mainstays of antiherpesvirus therapies — nucleoside analogues — have been successful by many criteria, they have numerous drawbacks, including the emergence of resistant viruses, which motivate the development of new antiherpesvirus drugs.

  • Drugs that target different stages of herpesvirus replication are under development. Drugs that target viral attachment and entry would be especially attractive, and new information about this stage of virus infection might identify new therapeutic targets.

  • Drugs that target herpesvirus gene expression have been identified, but their mechanisms of action remain poorly understood.

  • Several different classes of drugs target herpesvirus DNA replication. Some of these — including non-nucleoside inhibitors of viral DNA polymerase and helicase–primase inhibitors — show considerable promise and could soon enter human trials.

  • New inhibitors of herpesvirus assembly, encapsidation and nuclear egress have been developed. These compounds target different aspects of this late stage of infection, and several have entered clinical trials.

  • Strategies to inhibit herpesvirus replication by interfering with host-cell processes have been developed. These strategies include the inhibition of cyclin-dependent kinases and of cyclooxygenase-2.

  • No presently licensed antiviral drug is active against latent herpesvirus infections, so no cure for these infections is in sight. However, potential therapeutic targets have been identified in studies of Epstein–Barr virus proteins expressed during latency. These studies suggest strategies that might eventually be fruitful against latent infections.

Abstract

In the absence of effective vaccines to control herpesvirus infections, nucleosidic antiviral drugs have been the mainstay of clinical treatment since their development in the late 1970s. However, given the drawbacks of these drugs, including the increasing emergence of drug-resistant clinical isolates, new strategies for treating herpesvirus infections are warranted. A range of promising new drugs with novel molecular targets has been developed, but will they cure latent infections?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Herpesvirus replication cycle.
Figure 2: Herpesvirus DNA replication.
Figure 3: Inhibitors of herpesvirus DNA replication.
Figure 4: Possible inhibitors of herpesvirus gene expression.
Figure 5: Inhibitors of herpesvirus assembly, encapsidation and nuclear egress.
Figure 6: Inhibitors of cellular proteins that block viral replication.

Similar content being viewed by others

References

  1. Straus, S. E. in Mandell, Douglas and Bennet's Principles and Practice of Infectious Diseases (eds Mandell, G. L., Bennet, J. E. & Dolin, R.) 1557–1564 (Churchill Livingstone, London, 2000).

    Google Scholar 

  2. Weibel, R. E. et al. Live attenuated varicella virus vaccine: Efficacy trial in healthy children. N. Engl. J. Med. 310, 1409–1415 (1984).

    Article  CAS  Google Scholar 

  3. Gershon, A. A., Steinberg, S. P. & Gelb, L. Live attentuated varicella vaccine use in immunocompromised children and adults. Pediatrics 78, 757–762 (1986).

    CAS  Google Scholar 

  4. Kaufman, H. E., Martola, E. & Dohlman, C. Use of 5 Iodo-2'-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Am. J. Opthalmol. 6, 235–239 (1962).

    Google Scholar 

  5. Reyes, M. et al. Acyclovir-resistant genital herpes among persons attending sexually transmitted disease and acquired immunodeficiency clinics. Arch. Intern. Med. 163, 76–80 (2003).

    Article  Google Scholar 

  6. Jabs, D. A., Enger, C., Dunn, J. P. & Forman, M. S. Cytomegalovirus retinitis and viral resistance: ganciclovir resistance. J. Infect. Dis. 177, 770–773 (1998).

    Article  CAS  Google Scholar 

  7. Boivin, G. et al. Rate of emergence of cytomegalovirus (CMV) mutations in leukocytes of patients with acquired immunodeficiency syndrome who are receiving valganciclovir as induction and maintenance therapy for CMV retinitis. J. Infect. Dis. 184, 1598–1602 (2001).

    Article  CAS  Google Scholar 

  8. Pertel, P. E. & Spear, P. G. Modified entry and syncytium formation by herpes simplex virus type 1 mutants selected for resistance to heparin inhibition. Virology 226, 22–33 (1996).

    Article  CAS  Google Scholar 

  9. Orozco-Topete, R. et al. Safety and efficacy of Virend for topical treatment of genital and anal herpes simplex lesions in patients with AIDS. Antiviral Res. 35, 91–103 (1997).

    Article  CAS  Google Scholar 

  10. Spear, P. G., Eisenberg, R. J. & Cohen, G. H. Three classes of cell surface receptors for α herpesvirus entry. Virology 275, 1–8 (2000).

    Article  CAS  Google Scholar 

  11. Carfi, A. et al. Human herpes virus glycoprotein D bound to the human receptor HveA. Mol. Cell 8, 169–179 (2001). This paper shows the details of the interaction between a herpesvirus envelope protein and a receptor.

    Article  CAS  Google Scholar 

  12. Azad, R. F., Driver, V. B., Tanaka, K., Crooke, R. M. & Anderson, K. P. Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob. Agents Chemother. 37, 1945–1954 (1993).

    Article  CAS  Google Scholar 

  13. Mulamba, G. B., Hu, A., Azad, R. F., Anderson, K. P. & Coen, D. M. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomiversen (ISIS 2922). Antimicrob. Agents Chemother. 42, 971–973 (1998).

    Article  CAS  Google Scholar 

  14. Albin, R. et al. SCH 43478 and analogs: in vitro activity and in vivo efficacy of novel agents for herpesvirus type 2. Antiviral Res. 35, 139–146 (1997).

    Article  CAS  Google Scholar 

  15. Boulware, S. L., Bronstein, J. C., Nordby, E. C. & Weber, P. C. Identification and characterization of a benzothiophene inhibitor of herpes simplex virus type 1 replication which acts at the immediate early stage of infection. Antiviral Res. 51, 111–125 (2001).

    Article  CAS  Google Scholar 

  16. Brideau, R. J. et al. Broad-spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antiviral Res. 54, 19–28 (2002).

    Article  CAS  Google Scholar 

  17. Oien, N. L. et al. Broad-spectrum antiherpesvirus activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob. Agents Chemother. 46, 724–730 (2002).

    Article  CAS  Google Scholar 

  18. Thomsen, D. R. et al. Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo–dihyroquinolines, a novel class of herpesvirus antivirals. J. Virol. 77, 1868–1876 (2003). References 16–18 show the broad spectrum in vitro and in vivo antiherpesvirus activity of the 4-oxo–dihydroquinolines and provide evidence for their novel mechanism of action.

    Article  CAS  Google Scholar 

  19. Spector, F. C., Liang, L., Giordano, H., Sivaraja, M. & Petersen, M. G. Inhibition of herpes simplex virus replication by a 2-amino-thioazole via interactions with the helicase component of the UL5–UL8–UL52 complex. J. Virol. 72, 6979–69897 (1998).

    CAS  Google Scholar 

  20. Crute, J. E. et al. Herpes simplex virus helicase–primase inhibitors are active in animal models of human disease. Nature Med. 8, 386–391 (2002).

    Article  CAS  Google Scholar 

  21. Kleymann, G. et al. New helicase–primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nature Med. 8, 391–398 (2002). References 20 and 21 describe the development and properties of compounds that target the herpes simplex virus helicase–primase complex.

    Article  Google Scholar 

  22. Chen, X. et al. SAR studies of a novel series human cytomegalovirus primase inhibitors. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract F-1672 (Chicago, 2001).

  23. Powers, J. P. et al. Design of T0902611. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract F-1673 (Chicago, 2001).

  24. Cohen, H. A., Gaudreau, P., Brazeau, P. & Langelier, Y. Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature 321, 441–443 (1986).

    Article  CAS  Google Scholar 

  25. Dutia, B. M., Frame, M. C., Subak-Sharpe, J. H., Clark, W. N. & Marsden, H. S. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321, 439–441 (1986).

    Article  CAS  Google Scholar 

  26. McClements, W. et al. Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162, 270–273 (1988).

    Article  CAS  Google Scholar 

  27. Paradis, H., Gaudreau, P., Brazeau, P. & Langelier, Y. Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reducatse by a nonapeptide corresponding to the carboxy-terminus of its subunit 2. J. Biol. Chem. 263, 16045–16050 (1988).

    CAS  Google Scholar 

  28. Liuzzi, M. et al. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 372, 695–698 (1994).

    Article  CAS  Google Scholar 

  29. Moss, N. et al. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase with improved in vivo antiviral activity. J. Med. Chem. 39, 4173–4180 (1996).

    Article  CAS  Google Scholar 

  30. Bonneau, A. M. et al. Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates. J. Virol. 70, 787–793 (1996).

    CAS  Google Scholar 

  31. Marsden, H. S. et al. Role of the carboxy terminus of herpes simplex virus type 1 DNA polymerase in its interaction with UL42. J. Gen. Virol. 75, 3127–3135 (1994).

    Article  CAS  Google Scholar 

  32. Digard, P. et al. Specific inhibition of herpes simplex virus DNA polymerase by helical peptides corresponding to the subunit interface. Proc. Natl Acad. Sci. 92, 1456–1460 (1995).

    Article  CAS  Google Scholar 

  33. Loregian, A. et al. Intranuclear delivery of an antiviral peptide mediated by the B subunit of Escherichia coli heat-labile enterotoxin. Proc. Natl Acad. Sci. USA 96, 5221–5226 (1999).

    Article  Google Scholar 

  34. Zuccola, H. Z., Filman, D. J., Coen, D. M. & Hogle, J. M. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C-terminus of its cognate polymerase. Mol. Cell 5, 267–278 (2000).

    Article  CAS  Google Scholar 

  35. Bridges, K. G., Chow, C. S. & Coen, D. M. Identification of crucial hydrogen-bonding residues for the interaction of herpes simplex virus DNA polymerase subunits via peptide display, mutational, and calorimetric approaches. J. Virol. 75, 4990–4998 (2001).

    Article  CAS  Google Scholar 

  36. Pilger, B. D., Cui, C. & Coen, D. M. Inhibition of HSV DNA polymerase subunit interaction by small molecules. 27th International Herpesvirus Workshop. Abstract 5.10 (Cairns, Australia, 2002).

  37. Welch, A. R., Woods, A. S., McNally, L. M., Cotter, R. J. & Gibson, W. A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl Acad. Sci. USA 88, 10792–10796 (1991).

    Article  CAS  Google Scholar 

  38. Liu, F. Y. & Roizman, B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J. Virol. 65, 5149–5156 (1991).

    CAS  Google Scholar 

  39. Chen, P. et al. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86, 835–843 (1996).

    Article  CAS  Google Scholar 

  40. Shieh, H. S. et al. Three-dimensional structure of human cytomegalovirus protease. Nature 383, 279–282 (1996).

    Article  CAS  Google Scholar 

  41. Qiu, X. et al. Unique fold and active site in cytomegalovirus protease. Nature 383, 275–279 (1996).

    Article  CAS  Google Scholar 

  42. Tong, L. et al. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383, 272–275 (1996).

    Article  CAS  Google Scholar 

  43. Akanitapichat, P. & Bastow, K. F. The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antiviral Res. 53, 113–126 (2002).

    Article  CAS  Google Scholar 

  44. van Zeijl, M. et al. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J. Virol. 74, 9054–9061 (2000).

    Article  CAS  Google Scholar 

  45. Newcomb, W. W. & Brown, J. C. Inhibition of herpes simplex virus replication by WAY-150138: assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation. J. Virol. 76, 10084–10088 (2002). References 44 and 45 describe the activity and mechanism of novel inhibitors of HSV DNA cleavage and packaging.

    Article  CAS  Google Scholar 

  46. Krosky, P. M. et al. Resistance of human cytomegalovirus to benzimidazole nucleoside analogs maps to two open reading frames: UL89 and UL56. J. Virol. 72, 4721–4728 (1998).

    CAS  Google Scholar 

  47. Underwood, M. R. et al. Inhibition of HCMV DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol. 72, 717–725 (1998).

    CAS  Google Scholar 

  48. Reefschlaeger, J. Novel non-nucleoside inhibitors of cytomegaloviruses (BAY 38-4766): in vitro and in vivo antiviral activity and mechanism of action. J. Antimicrob. Chemother. 48, 757–767 (2001).

    Article  CAS  Google Scholar 

  49. Buerger, I. et al. A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J. Virol. 75, 9077–9086 (2001).

    Article  CAS  Google Scholar 

  50. Nagelschmitz, J., Moeller, J. G., Stass, H. H., Wandel, C. & Kuhlmann, J. Safety, tolerability, and pharmacokinetics of single oral doses of BAY 38-4766: a novel, nonnucleosidic inhibitor of human cytomegalovirus. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract F-945 (San Francisco, 1999).

  51. Boyd, F. L. et al. Synthesis and evaluation of a series of 1-benzimidazole pyranosides as anti-human cytomegalovirus agents. 218th American Chemical Society National Meeting. MEDI-283 (New Orleans, 1999).

  52. Biron, K. K. et al. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action. Antimicrob. Agents Chemother. 46, 2365–2372 (2002). This paper describes the activity and aspects of the mechanism of maribavir.

    Article  CAS  Google Scholar 

  53. Baek, M. C., Krosky, P. M., He, Z. & Coen, D. M. Specific phosphorylation of exogenous protein and peptide substrates by the human cytomegalovirus UL97 protein kinase: importance of the P+5 position. J. Biol. Chem. 277, 29593–29599 (2002).

    Article  CAS  Google Scholar 

  54. Krosky, P. M., Baek, M. C. & Coen, D. M. Human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J. Virol. 77, 905–914 (2003).

    Article  CAS  Google Scholar 

  55. Wolf, D. G., Courcelle, C. T., Prichard, M. N. & Mocarski, E. S. Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc. Natl Acad. Sci. USA 98, 1895–1900 (2001). References 54 and 55 provide differing viewpoints on the mechanism of maribavir.

    Article  CAS  Google Scholar 

  56. Zimmermann, A., Wilts, H., Lenhardt, M., Hahn, M. & Mertens, T. Indolocarbazoles exhibit strong antiviral activity against human cytomegalovirus and are potent inhibitors of the pUL97 protein kinase. Antiviral Res. 48, 49–60 (2000).

    Article  CAS  Google Scholar 

  57. Marschall, M. et al. Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J. Gen. Virol. 82, 1439–1450 (2001).

    Article  CAS  Google Scholar 

  58. Marschall, M. et al. Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J. Gen. Virol. 83, 1013–1023 (2002).

    Article  CAS  Google Scholar 

  59. Lalezari, J. P. et al. Phase I dose escalation trial evaluating the pharmacokinetics, anti-human cytomegalovirus (HCMV) activity, and safety of 1263W94 in human immunodeficiency virus-infected men with asymptomatic HCMV shedding. Antimicrob. Agents Chemother. 46, 2969–2976 (2002). Presents evidence for antiviral activity of maribavir in human patients.

    Article  CAS  Google Scholar 

  60. Bresnahan, W. A., Boldogh, I., Thompson, E. A. & Albrecht, T. Inhibition of cellular cdk2 activity blocks human cytomegalovirus replication. Virology 231, 239–247 (1997).

    Article  CAS  Google Scholar 

  61. Schang, L. M. et al. Pharmacological cyclin-dependent kinase inhibitors inhibit replication of wild-type and drug-resistant strains of herpes simplex virus type 1 by targeting cellular, not viral, proteins. J. Virol. 76, 7874–7882 (2002). Describes the antiviral properties of purine-derived inhibitors of cyclin-dependent kinases.

    Article  CAS  Google Scholar 

  62. Moffat, J., Leisenfelder, S. & Hartigan, A. VZV replication in retinal pigment epithelial cells causes an induction of cyclin-dependent kinase 2 and growth can be blocked by roscovitine, a cdk 2 inhibitor. 27th International Herpesvirus Workshop, Abstract 13.15, (Cairns, Australia, 2002).

  63. Schang, L. M., Phillips, J. & Schaffer, P. A. Requirement for cellular cyclin-dependent kinases in herpes simplex virus replication and transcription. J. Virol. 72, 5626–5637 (1998).

    CAS  Google Scholar 

  64. Zhu, H., Cong, J. P., Yu, D., Breshnahan, W. A. & Shenk, T. E. Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl Acad. Sci. USA 99, 3932–3937 (2002).

    Article  CAS  Google Scholar 

  65. Amici, C., Belardo, G., Rossi, A. & Santoro, M. G. Activation of IKB kinase by herpes simplex virus type 1. J. Biol. Chem. 276, 28759–28766 (2001).

    Article  CAS  Google Scholar 

  66. Schang, L. M. Cyclin-dependent kinases as cellular targets for antiviral drugs. J. Antimicrob. Chemother. 50, 779–792 (2002).

    Article  CAS  Google Scholar 

  67. Tyring, S., Spruance, S. L., Smith, M. H. & Meng, T. Immunomodulation to decrease recurrences of Herpes genitalis: a dose ranging study of topical resiquimod. Int. J. STD AIDS. 12, Suppl. 2, 151–152 (2001).

    Google Scholar 

  68. Higaki, S., Gebhardt, B. M., Lukiw, W. J., Thompson, H. W. & Hill, J. M. Effect of immunosuppression on gene expression of the HSV-1 latently infected mouse trigeminal ganglion. Invest. Opthalmol. Vis. Sci. 43, 1862–1869 (2002).

    Google Scholar 

  69. Kramer, M. F. et al. Host gene expression in murine ganglia latently infected with herpes simplex virus (HSV). 27th International Herpesvirus Workshop. Abstract 15.09 (Cairns, Australia, 2002).

  70. Rickinson, A. B. & Kieff, E. in Fields Virology 4th ed, Vol. 2 (eds Knipe, D. M. et al.) 2572–2627 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  71. Kieff, E. & Rickinson, A. B. in Fields Virology 4th ed, Vol. 2 (eds Knipe, D. M. et al.) 2511–2573 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  72. Leight, E. R. & Sugden, B. EBNA-1: a protein pivotal to latent infection by Epstein–Barr virus. Rev. Med. Virol. 10, 83–100 (2000).

    Article  CAS  Google Scholar 

  73. Pagano, J. S., Jimenez, G., Sung, N. S., Raab-Traub, N. & Lin, J. C. Epstein–Barr viral latency and cell immortalization as targets for antisense oligomers. Ann. NY Acad. Sci. 660, 107–116 (1992).

    Article  CAS  Google Scholar 

  74. Roth, G., Curiel, T. & Lacy, J. Epstein–Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein–Barr virus-immortalized B cells. Blood 84, 582–587 (1994).

    CAS  Google Scholar 

  75. Huang, S., Stupack, D., Mathias, P., Wang, Y. & Nemerow, G. Growth arrest of Epstein–Barr virus immortalized B lymphocytes by adenovirus-delivered ribozymes. Proc. Natl Acad. Sci. USA 94, 8156–8161 (1997).

    Article  CAS  Google Scholar 

  76. Kenney, J. L., Guinness, M. E., Curiel, T. & Lacy, J. Antisense to the Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and Bcl-2 expression and promotes apoptosis in EBV-immortalized B cells. Blood 92, 1721–1727 (1998).

    CAS  Google Scholar 

  77. Cooper, L. & Longnecker, R. Inhibition of host kinase activity altered by the LMP2A signalosome- a therapeutic target for Epstein–Barr virus latency and associated disease. Antiviral Res. 56, 219–231 (2002). This paper presents an interesting strategy for treating latent EBV disease by targeting a cellular enzyme.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

COX2

Thymidine kinase

FURTHER INFORMATION

Encyclopedia of Life Sciences

Antiviral drugs

Epstein–Barr virus

Herpesvirus (human)

cytomegaloviruses

cytomegalovirus in human infection

Glossary

NUCLEOSIDE ANALOGUES

Compounds that resemble nucleosides.

DNA POLYMERASE

An enzyme that extends RNA or DNA primer chains in a template-dependent fashion by incorporating deoxynucleoside triphosphates.

PRODRUG

A compound that is subsequently converted into the actual drug once administered

KINASE

An enzyme that adds phosphate groups to its substrates.

HELICASE

An enzyme that unwinds DNA at the replication fork.

PRIMASE

An enzyme that synthesizes short RNA primers that are subsequently elongated by DNA polymerase.

RIBONUCLEOTIDE REDUCTASE

An enzyme that converts ribnucleoside diphosphates into deoxyribonucleoside diphosphates.

PEPTIDOMIMETICS

Non-peptidic compounds that mimic peptides.

ENCAPSIDATION

An event during viral assembly in which the viral nucleic acid becomes surrounded by the protein capsid.

CLEAVAGE

An event during the assembly of certain viruses in which long nucleic-acid precursors are cleaved to the correct length during the encapsidation process.

TERMINASE

An enzyme that cleaves DNA during the encapsidation process.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coen, D., Schaffer, P. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov 2, 278–288 (2003). https://doi.org/10.1038/nrd1065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing