Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurodegenerative diseases and oxidative stress

Key Points

  • Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis(ALS).

  • These diseases are characterized by extensive oxidative damage to lipids, proteins and DNA. This damage can lead to cell death by a variety of different mechanisms, either by deactivating important processes or by upregulating toxic cascades.

  • Oxidative stress is the result of an imbalance in the pro-oxidant/antioxidant homeostasis leading to the generation of toxic reactive oxygen species (ROS). ROS have a normal metabolic role in cell signalling and are generated by the interaction of oxygen with redox-active metal ions. As ROS can be damaging both metals and ROS are tightly regulated.

  • Genetics has identified Aβ, α-synuclein and SOD as playing a pivotal role in AD, PD and ALS, respectively. These proteins are the major components of the deposits associated with these diseases. All these proteins have been shown to interact with redox-active metal ions with the subsequent generation of ROS.

  • Aβ will coordinate copper and iron and generate H2O2 with the further generation of ROS through Fenton chemistry. α-synuclein regulates the uptake of vesicular dopamine, and a breakdown in this process allows the build-up of dopamine in the cytoplasm. Dopamine coordinates iron and induces the formation of ROS. Destabilization of the active site of SOD allows a corruption of this antioxidant enzyme such that it becomes pro-oxidant.

  • Excitotoxicity is a downstream consequence of calcium dysregulation as a result of unregulated ROS. Drugs targeting this toxicity (Memantine in AD, Amantadine in PD and Riluzole in ALS) have modest clinical benefit. The antioxidant α-tocopherol has shown clinical promise against AD. Inhibiting metal-mediated redox processes has shown benefit in mouse models of AD and PD and encouraging promise in a small Phase II clinical trial for AD.

Abstract

Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal–protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ROS generation by abnormal reaction of O2 with protein-bound Fe or Cu.
Figure 2: Oxidative stress in Alzheimer's disease.
Figure 3: Oxidative stress in Parkinson's disease.
Figure 4: Oxidative stress in amyotrophic lateral sclerosis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Selley, M. L., Close, D. R. & Stern, S. E. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer's disease. Neurobiol. Aging 23, 383–388 (2002).

    CAS  PubMed  Google Scholar 

  2. Butterfield, D. A., Castegna, A., Lauderback, C. M. & Drake, J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol. Aging 23, 655–664 (2002).

    PubMed  Google Scholar 

  3. Dexter, D. T. et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52, 381–389 (1989).

    CAS  PubMed  Google Scholar 

  4. Pedersen, W. A. et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824 (1998).

    CAS  PubMed  Google Scholar 

  5. Arlt, S., Beisiegel, U. & Kontush, A. Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease. Curr. Opin. Lipidol. 13, 289–294 (2002).

    CAS  PubMed  Google Scholar 

  6. Sayre, L. M., Smith, M. A. & Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8, 721–738 (2001).

    CAS  PubMed  Google Scholar 

  7. Gabbita, S. P., Lovell, M. A. & Markesbery, W. R. Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J. Neurochem. 71, 2034–2040 (1998).

    CAS  PubMed  Google Scholar 

  8. Alam, Z. I. et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203 (1997).

    CAS  PubMed  Google Scholar 

  9. Zemlan, F. P., Thienhaus, O. J. & Bosmann, H. B. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res. 476, 160–162 (1989).

    CAS  PubMed  Google Scholar 

  10. Pappolla, M. A., Omar, R. A., Kim, K. S. & Robakis, N. K. Immunohistochemical evidence of oxidative stress in Alzheimer's disease. Am. J. Pathol. 140, 621–628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrari, C. K. B. Free radicals, lipid peroxidation and antioxidents in apoptosis: implications in cancer, cardiovascular and neurological diseases. Biologia 55, 581–590 (2000).

    CAS  Google Scholar 

  12. Lovell, M. A., Xie, C. & Markesbery, W. R. Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic. Biol. Med. 29, 714–720 (2000).

    CAS  PubMed  Google Scholar 

  13. Keller, J. N. et al. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284 (1997).

    CAS  PubMed  Google Scholar 

  14. Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tamagno, E. et al. H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180, 144–155 (2003).

    CAS  PubMed  Google Scholar 

  16. Ermak, G. & Davies, K. J. Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol. 38, 713–721 (2002).

    CAS  PubMed  Google Scholar 

  17. LaFerla, F. M. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nature Rev. Neurosci. 3, 862–872 (2002).

    CAS  Google Scholar 

  18. Gibson, G. E. Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease. Free Radic. Biol. Med. 32, 1061–1070 (2002).

    CAS  PubMed  Google Scholar 

  19. Mattson, M. P. & Chan, S. L. Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 34, 385–397 (2003).

    CAS  PubMed  Google Scholar 

  20. Yamamoto, K. et al. The hydroxyl radical scavenger Nicaraven inhibits glutamate release after spinal injury in rats. Neuroreport 9, 1655–1659 (1998).

    CAS  PubMed  Google Scholar 

  21. Mattson, M. P. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3, 65–94 (2003).

    CAS  PubMed  Google Scholar 

  22. Lewen, A., Matz, P. & Chan, P. H. Free radical pathways in CNS injury. J. Neurotrauma 17, 871–890 (2000).

    CAS  PubMed  Google Scholar 

  23. Suzuki, Y. J., Forman, H. J. & Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 22, 269–285 (1997). A seminal work describing a potential physiological role for ROS.

    CAS  PubMed  Google Scholar 

  24. Neill, S., Desikan, R. & Hancock, J. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388–395 (2002).

    CAS  PubMed  Google Scholar 

  25. Halliwell, B. & Gutteridge, J. Free Radicals in Biology and Medicine (Oxford Univ. Press, Oxford, 1999). The definitive textbook on ROS.

    Google Scholar 

  26. Morita, A., Kimura, M. & Itokawa, Y. The effect of aging on the mineral status of female mice. Biol. Trace Elem. Res. 42, 165–177 (1994).

    CAS  PubMed  Google Scholar 

  27. Takahashi, S. et al. Age-related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol. Trace Elem. Res. 80, 145–158 (2001).

    CAS  PubMed  Google Scholar 

  28. Maynard, C. J. et al. Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277, 44670–4476 (2002). References 26–28 describe the rise in metal concentration within the brain as a consequence of normal aging, age being the major risk factor for the neurodegenerative diseases.

    CAS  PubMed  Google Scholar 

  29. Bush, A. I. Metals and neuroscience. Curr. Opin. Chem. Biol. 4, 184–191 (2000).

    CAS  PubMed  Google Scholar 

  30. Bush, A. I. The metallobiology of Alzheimer's disease. Trends Neurosci. 26, 207–214 (2003).

    CAS  PubMed  Google Scholar 

  31. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997).

    CAS  PubMed  Google Scholar 

  32. Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    CAS  PubMed  Google Scholar 

  33. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984). References 33 and 34 represent the first characterization of the deposited amyloid within the AD brain.

    CAS  PubMed  Google Scholar 

  35. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    CAS  PubMed  Google Scholar 

  36. Lee, J. Y., Cole, T. B., Palmiter, R. D., Suh, S. W. & Koh, J. Y. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl Acad. Sci. USA 99, 7705–7710 (2002). This paper highlights the pivotal role zinc plays in the deposition of Aβ.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998). This paper illustrates that plaques associated with AD are metal sinks.

    CAS  PubMed  Google Scholar 

  38. Smith, M. A., Harris, P. L., Sayre, L. M. & Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, X. et al. Zinc-induced Alzheimer's Aβ 1–40 aggregation is mediated by conformational factors. J. Biol. Chem. 272, 26464–26470 (1997).

    CAS  PubMed  Google Scholar 

  40. Atwood, C. S. et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826 (1998).

    CAS  PubMed  Google Scholar 

  41. Terry, R. D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55, 1023–1025 (1996).

    CAS  PubMed  Google Scholar 

  42. Martins, R. N., Harper, C. G., Stokes, G. B. & Masters, C. L. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress. J. Neurochem. 46, 1042–1045 (1986).

    CAS  PubMed  Google Scholar 

  43. Sayre, L. M. et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J. Neurochem. 74, 270–279 (2000).

    CAS  PubMed  Google Scholar 

  44. Atwood, C. S., Huang, X., Moir, R. D., Tanzi, R. E. & Bush, A. I. Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease. Met. Ions Biol. Syst. 36, 309–364 (1999).

    CAS  PubMed  Google Scholar 

  45. Basun, H., Forssell, L. G., Wetterberg, L. & Winblad, B. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J. Neural Transm. Park. Dis. Dement. Sect. 3, 231–258 (1991).

    CAS  PubMed  Google Scholar 

  46. Squitti, R. et al. Elevation of serum copper levels in Alzheimer's disease. Neurology 59, 1153–1161 (2002).

    CAS  PubMed  Google Scholar 

  47. Bishop, G. M. et al. Iron: a pathological mediator of Alzheimer disease? Dev. Neurosci. 24, 184–187 (2002).

    CAS  PubMed  Google Scholar 

  48. Smith, M. A. et al. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 46, 731–735 (1998).

    CAS  PubMed  Google Scholar 

  49. Dong, J. et al. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773 (2003).

    CAS  PubMed  Google Scholar 

  50. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994). Initial identification of H 2 O 2 as a key participant in the toxicity of Aβ.

    CAS  PubMed  Google Scholar 

  51. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    CAS  PubMed  Google Scholar 

  52. Huang, X. et al. Cu(II) potentiation of alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 37111–37116 (1999).

    CAS  PubMed  Google Scholar 

  53. Huang, X. et al. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999). References 52 and 53 demonstrated that Aβ will generate H 2 O 2 when Aβ coordinates copper.

    CAS  PubMed  Google Scholar 

  54. Cuajungco, M. P. et al. Evidence that the β-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of Aβ by zinc. J. Biol. Chem. 275, 19439–19442 (2000).

    CAS  PubMed  Google Scholar 

  55. Curtain, C. C. et al. Alzheimer's disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466–20473 (2001). This paper shows that metals can affect Aβ membrane-bound structures with a metal coordination site similar to the active site of SOD.

    CAS  PubMed  Google Scholar 

  56. Curtain, C. C. et al. Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-β peptide with membrane lipid. J. Biol. Chem. 278, 2977–2982 (2003).

    CAS  PubMed  Google Scholar 

  57. Atwood, C. S. et al. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β 1–42. J. Neurochem. 75, 1219–1233 (2000).

    CAS  PubMed  Google Scholar 

  58. Barnham, K. J. et al. Neurotoxic, redox-competent Alzheimer's β-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278, 42959–42965 (2003). A demonstration that a non-fibrillar, highly soluble form of Aβ is still neurotoxic.

    CAS  PubMed  Google Scholar 

  59. Atwood, C. S. et al. Copper catalyzed oxidation of Alzheimer Aβ. Cell. Mol. Biol. (Noisy-Le-Grand) 46, 777–783 (2000).

    CAS  Google Scholar 

  60. Head, E. et al. Oxidation of Aβ and plaque biogenesis in Alzheimer's disease and Down syndrome. Neurobiol. Dis. 8, 792–806 (2001).

    CAS  PubMed  Google Scholar 

  61. McLean, C. A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866 (1999). A demonstration that AD progression correlates with soluble Aβ, not the deposited material found within plaques.

    CAS  PubMed  Google Scholar 

  62. Cherny, R. A. et al. Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion. J. Biol. Chem. 274, 23223–23228 (1999).

    CAS  PubMed  Google Scholar 

  63. Lau, T. L., Barnham, K. J., Curtain, C. C., Masters, C. L. & Separovic, F. Magnetic resonance studies of β-amyloid peptides. Aust. J. Chem 56, 349–356 (2003).

    CAS  Google Scholar 

  64. Atwood, C. S. et al. Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β. Brain Res. Brain Res. Rev. 43, 1–16 (2003).

    CAS  PubMed  Google Scholar 

  65. Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997). Identifies α-synuclein as the major protein deposited in the Lewy bodies associated with PD.

    CAS  PubMed  Google Scholar 

  66. Gasser, T. Genetics of Parkinson's disease. J. Neurol. 248, 833–840 (2001).

    CAS  PubMed  Google Scholar 

  67. Marsden, C. D. Neuromelanin and Parkinson's disease. J. Neural. Transm. Suppl. 19, 121–141 (1983).

    CAS  PubMed  Google Scholar 

  68. Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988). Identifies the selective destruction of specific cell types in the progression of PD.

    CAS  PubMed  Google Scholar 

  69. Wakamatsu, K., Fujikawa, K., Zucca, F. A., Zecca, L. & Ito, S. The structure of neuromelanin as studied by chemical degradative methods. J. Neurochem. 86, 1015–1023 (2003). Identifies the chemical nature of neuromelanin thereby providing further evidence as to why neuromelanin-containing cells are susceptible in PD.

    CAS  PubMed  Google Scholar 

  70. Zecca, L. et al. The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour. J. Neural. Transm. Suppl. 145–155 (2003).

  71. Gerard, C., Chehhal, H. & Hugel, R. P. Complexes of iron(III) with ligands of biological interest: dopamine and 8-hydroxyquinoline-5-sulfonic acid. Polyhedron 13, 591–597 (1994).

    CAS  Google Scholar 

  72. Double, K. L. et al. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem. Pharmacol. 66, 489–494 (2003).

    CAS  PubMed  Google Scholar 

  73. Smythies, J. On the function of neuromelanin. Proc. R. Soc. Lond. B Biol. Sci. 263, 487–489 (1996).

    CAS  Google Scholar 

  74. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ben-Shachar, D., Riederer, P. & Youdim, M. B. Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 57, 1609–1614 (1991).

    CAS  PubMed  Google Scholar 

  76. Faucheux, B. A. et al. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J. Neurochem. 86, 1142–1148 (2003).

    CAS  PubMed  Google Scholar 

  77. Lotharius, J. et al. Effect of mutant α-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J. Biol. Chem. 277, 38884–38894 (2002).

    CAS  PubMed  Google Scholar 

  78. Lotharius, J. & Brundin, P. Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum. Mol. Genet. 11, 2395–2407 (2002).

    CAS  PubMed  Google Scholar 

  79. Baptista, M. J. et al. Co-ordinate transcriptional regulation of dopamine synthesis genes by α-synuclein in human neuroblastoma cell lines. J. Neurochem. 85, 957–968 (2003).

    CAS  PubMed  Google Scholar 

  80. Wersinger, C., Prou, D., Vernier, P. & Sidhu, A. Modulation of dopamine transporter function by α-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB. J. (2003).

  81. Perez, R. G. et al. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Braak, E. et al. α-synuclein immunopositive Parkinson's disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol. (Berl) 101, 195–201 (2001).

    CAS  Google Scholar 

  83. Fasano, M., Giraudo, S., Coha, S., Bergamasco, B. & Lopiano, L. Residual substantia nigra neuromelanin in Parkinson's disease is cross-linked to α-synuclein. Neurochem. Int. 42, 603–606 (2003).

    CAS  PubMed  Google Scholar 

  84. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 8, 600–606 (2002). References 77–84 show links between α-synuclein, which genetics demonstrates is important in the progression of PD, and dopamine, which is required for the redox chemistry that is responsible for the oxidative stress.

    CAS  PubMed  Google Scholar 

  85. Paik, S. R., Shin, H. J., Lee, J. H., Chang, C. S. & Kim, J. Copper(II)-induced self-oligomerization of α-synuclein. Biochem. J. 340, 821–828 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Uversky, V. N., Li, J. & Fink, A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276, 44284–44296 (2001).

    CAS  PubMed  Google Scholar 

  87. Lee, E. N., Lee, S. Y., Lee, D., Kim, J. & Paik, S. R. Lipid interaction of α-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2 . J. Neurochem. 84, 1128–1142 (2003).

    CAS  PubMed  Google Scholar 

  88. Yamin, G., Glaser, C. B., Uversky, V. N. & Fink, A. L. Certain metals trigger fibrillation of methionine-oxidized α-synuclein. J. Biol. Chem. 278, 27630–27635 (2003).

    CAS  PubMed  Google Scholar 

  89. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    CAS  PubMed  Google Scholar 

  90. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994). This paper reports that ALS mutant SOD is toxic — that is, there is a toxic gain of function.

    CAS  PubMed  Google Scholar 

  91. Valentine, J. S. & Hart, P. J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 100, 3617–3622 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    CAS  PubMed  Google Scholar 

  93. Ghadge, G. D. et al. Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J. Neurosci. 17, 8756–8766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hottinger, A. F., Fine, E. G., Gurney, M. E., Zurn, A. D. & Aebischer, P. The copper chelator D-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur. J. Neurosci. 9, 1548–1551 (1997).

    CAS  PubMed  Google Scholar 

  95. Azzouz, M. et al. Prevention of mutant SOD1 motoneuron degeneration by copper chelators in vitro. J. Neurobiol. 42, 49–55 (2000). References 92–95 show that copper chelators inhibit the mutant SOD toxicity, implying that copper has a pivotal role in the progression of ALS.

    CAS  PubMed  Google Scholar 

  96. Estevez, A. G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–500 (1999).

    CAS  PubMed  Google Scholar 

  97. Subramaniam, J. R. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nature Neurosci. 5, 301–307 (2002). Reports that the copper at the active site of SOD is not responsible for the observed toxicity.

    CAS  PubMed  Google Scholar 

  98. Goto, J. J. et al. Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 275, 1007–1014 (2000).

    CAS  PubMed  Google Scholar 

  99. Liu, H. et al. Copper2+ binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry 39, 8125–8132 (2000). Identification of a low-affinity, surface-located copper-binding site on SOD that is redox active and therefore could play some role in mediating redox-associated oxidative stress.

    CAS  PubMed  Google Scholar 

  100. Bush, A. I. Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? Nature Neurosci. 5, 919; author reply 919–920 (2002).

    CAS  PubMed  Google Scholar 

  101. Moosmann, M. & Behl, C. Antioxidants as treatment for neurodegenerative disorders. Exp. Opin. Invest. Drugs 11, 1407–1435 (2002).

    CAS  Google Scholar 

  102. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group. N. Engl. J. Med. 328, 176–183 (1993).

  103. Sano, M. et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med. 336, 1216–1222 (1997). This study showed that the antioxident vitamin E has protective effects in an AD clinical trial.

    CAS  PubMed  Google Scholar 

  104. Grundman, M. Vitamin E and Alzheimer's disease: the basis for additional clinical trials. Am. J. Clin. Nutr. 71, S630–S636 (2000).

    Google Scholar 

  105. Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med. 348, 1333–1341 (2003).

    CAS  PubMed  Google Scholar 

  106. Mobius, H. J. Memantine: update on the current evidence. Int. J. Geriatr. Psychiatry 18, S47–S54 (2003).

    PubMed  Google Scholar 

  107. Winblad, B. & Jelic, V. Treating the full spectrum of dementia with memantine. Int. J. Geriatr. Psychiatry 18, S41–S46 (2003).

    PubMed  Google Scholar 

  108. Hely, M. A., Fung, V. S. & Morris, J. G. Treatment of Parkinson's disease. J. Clin. Neurosci. 7, 484–494 (2000).

    CAS  PubMed  Google Scholar 

  109. Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330, 585–591 (1994).

    CAS  PubMed  Google Scholar 

  110. Doraiswamy, P. M. Non-cholinergic strategies for treating and preventing Alzheimer's disease. CNS Drugs 16, 811–824 (2002).

    CAS  PubMed  Google Scholar 

  111. Mattson, M. P. Will caloric restriction and folate protect against AD and PD? Neurology 60, 690–695 (2003).

    CAS  PubMed  Google Scholar 

  112. Crapper McLachlan, D. R. et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet 337, 1304–1308 (1991).

    CAS  PubMed  Google Scholar 

  113. Cherny, R. A. et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30, 665–676 (2001). Inhibiting metal Aβ interactions have positive outcomes in a transgenic mouse model.

    CAS  PubMed  Google Scholar 

  114. Ritchie, C. W. et al. Metal–protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer's disease: biochemical and clinical responses in a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003). Proof-of-concept Phase II clinical trial that demonstrates that inhibiting Aβ metal interactions has positive clinical results.

    PubMed  Google Scholar 

  115. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    CAS  PubMed  Google Scholar 

  116. Kaur, D. et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37, 899–909 (2003). A demonstration that targeting metals in a mouse model of PD has positive effects.

    CAS  PubMed  Google Scholar 

  117. Angel, I. et al. Metal ion chelation in neurodegenerative disorders. Drug Dev. Res. 56, 300–309 (2002).

    CAS  Google Scholar 

  118. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    CAS  PubMed  Google Scholar 

  119. Bradley, J. L. et al. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum. Mol. Genet. 9, 275–282 (2000).

    CAS  PubMed  Google Scholar 

  120. Rustin, P. et al. Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study. Lancet 354, 477–479 (1999).

    CAS  PubMed  Google Scholar 

  121. Hausse, A. O. et al. Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart 87, 346–349 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Buyse, G. et al. Idebenone treatment in Friedreich's ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60, 1679–1681 (2003).

    CAS  PubMed  Google Scholar 

  123. Wong, A. et al. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum. Mol. Genet. 8, 425–430 (1999).

    CAS  PubMed  Google Scholar 

  124. Richardson, D. R., Mouralian, C., Ponka, P. & Becker, E. Development of potential iron chelators for the treatment of Friedreich's ataxia: ligands that mobilize mitochondrial iron. Biochim. Biophys. Acta 1536, 133–40 (2001).

    CAS  PubMed  Google Scholar 

  125. Culotta, V. C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997). Identification of the protein responsible for loading copper into the active site of SOD.

    CAS  PubMed  Google Scholar 

  126. Waggoner, D. J., Bartnikas, T. B. & Gitlin, J. D. The role of copper in neurodegenerative disease. Neurobiol. Dis. 6, 221–230 (1999).

    CAS  PubMed  Google Scholar 

  127. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999). This paper illustrates the elaborate mechanisms that nature has evolved to tightly regulate metal ions.

    CAS  PubMed  Google Scholar 

  128. Andrews, N. C. Mining copper transport genes. Proc. Natl Acad. Sci. USA 98, 6543–6545 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. White, A. R. et al. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res. 842, 439–444 (1999). A demonstration that APP has a role in copper homeostasis.

    CAS  PubMed  Google Scholar 

  130. Bayer, T. A. et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc. Natl Acad. Sci. USA 100, 14187–14192 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Phinney, A. L. et al. In vivo reduction of amyloid-β by a mutant copper transporter. Proc. Natl Acad. Sci. USA 100, 14193–14198 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Borchardt, T. et al. Copper inhibits β-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344 Pt 2, 461–467 (1999). References 130–132 Illustrate how copper can mediate APP processing to reduce Aβ production.

    CAS  PubMed  Google Scholar 

  133. Barnham, K. J. et al. Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278, 17401–17407 (2003). 3D Structure of the copper–binding domain of APP showing where and how APP coordinates copper.

    CAS  PubMed  Google Scholar 

  134. Rogers, J. T. et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528 (2002).

    CAS  PubMed  Google Scholar 

  135. Levin, V. A. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23, 682–684 (1980).

    CAS  PubMed  Google Scholar 

  136. Habgood, M. D. et al. Investigation into the correlation between the structure of hydroxypyridinones and blood–brain barrier permeability. Biochem. Pharmacol. 57, 1305–1310 (1999).

    CAS  PubMed  Google Scholar 

  137. Iyer, M., Mishru, R., Han, Y. & Hopfinger, A. J. Predicting blood–brain barrier partitioning of organic molecules using membrane–interaction QSAR analysis. Pharm Res 19, 1611–1621 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley I. Bush.

Ethics declarations

Competing interests

The authors are shareholders and paid consultants to Prana Biotechnology Ltd. C.L. Masters and A.I. Bush are on the scientific advisory board of Prana Biotechnology Ltd.

Related links

Related links

DATABASES

LocusLink

β-actin

catalase

creatine kinase

frataxin

glucose transporter type-3

glutathione peroxidase

glutathione reductase

mitogen-activated protein kinase-1

SOD

α-synuclein

xanthine dehydrogenase

Online Mendelian Inheritance in Man

Alzheimer's disease

amyotrophic lateral sclerosis

Friedreich's ataxia

Huntington's disease

nitric oxide synthase

Parkinson's disease

stroke

Wilson's disease

Glossary

HIPPOCAMPUS

A region of the brain consisting of the grey matter at the bottom of the lateral ventricle that is involved in motivation, emotion and the formation of memory.

REDOX

A reversible chemical reaction in which one reaction is an oxidation reaction and the reverse a reduction.

FENTON REACTION

Mn+ + H2O2 → M(n+1)+ + OH− + OH•

AMYLOID

Protein/peptide deposited in diseased tissue, with high β-sheet structure.

NEUROPILE

The mass of closely packed nerve cell processes comprising the central part of a ganglion.

DEMENTIA

Mental deterioration of organic or functional origin.

SUBSTANTIA NIGRA

A small area of the brain containing a cluster of dark-pigmented nerve cells that produces dopamine for neurotransmission.

CORTEX

The unmyelinated neurons (the grey matter) forming the outer layer of the cerebrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnham, K., Masters, C. & Bush, A. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3, 205–214 (2004). https://doi.org/10.1038/nrd1330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing