Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving role of natural products in drug discovery

Key Points

  • Chemical substances derived from animals, plants and microbes have been a major source of lead compounds for the pharmaceutical industry; of the 877 small-molecule New Chemical Entities (NCEs) introduced between 1981 and 2002, 49% were natural products, semi-synthetic natural product analogues or synthetic compounds based on natural-product pharmacophores.

  • Despite this success, pharmaceutical research into natural products has experienced a slow decline during the past two decades.

  • The decreased emphasis in the pharmaceutical industry on the discovery of natural products can be attributed to several factors, including:

  • the introduction of high-throughput screening against defined molecular targets, which prompted many companies to move from natural-product extract libraries towards 'screen friendly' synthetic chemical libraries.

  • the development of combinatorial chemistry, which at first offered the prospect of simpler, more drug-like screening libraries of wide chemical diversity

  • advances in molecular biology, cellular biology and genomics, which increased the number of molecular targets and prompted shorter drug discovery timelines.

  • However, emerging trends, coupled with unrealized expectations from current R&D strategies, are prompting a renewed interest in natural products as a source of chemical diversity and lead generation. As reviewed here, technological advances, in particular, crucial breakthroughs in separation and structure-determination technologies, are addressing the factors above that led to decreased pharmaceutical research into natural products.

Abstract

Natural products and their derivatives have historically been invaluable as a source of therapeutic agents. However, in the past decade, research into natural products in the pharmaceutical industry has declined, owing to issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening. However, as discussed in this review, recent technological advances that help to address these issues, coupled with unrealized expectations from current lead-generation strategies, have led to a renewed interest in natural products in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Worldwide pharmaceutical natural-product patents.
Figure 2: Examples of natural-product drugs.
Figure 3: Structural themes in natural products that target tubulin protein–protein interactions.
Figure 4: Using natural-product structure–activity relationships and shotgun synthesis to optimize biological activity: the example of mannopeptimycins.
Figure 5: Chemical process for natural product discovery.
Figure 6: Generic scheme for bioassay-guided fractionation.
Figure 7: Affinity-based identification system for natural products.
Figure 8: Harnessing highly toxic natural products for cancer therapy.

Similar content being viewed by others

References

  1. Newman, D. J., Cragg, G. M. & Snader, K. M. Natural products as a source of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1002–1037 (2003). A detailed analysis and description of current natural-product-derived therapeutic agents.

    Google Scholar 

  2. Projan, S. J. Infectious diseases in the 21st century: increasing threats, fewer new treatments and a premium on prevention. Cur. Opin. Pharmacol. 3, 457–458 (2003).

    CAS  Google Scholar 

  3. Kirsop, B. E. The convention on biological diversity: some implications for microbiology and microbial collections. J. Indust. Microbiol. Biotech. 17, 505–511 (1996).

    CAS  Google Scholar 

  4. Projan S. J. Why is big pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    PubMed  Google Scholar 

  5. Ajay, W. P. W. & Murcko, M. Can we learn to distinguish between 'Drug-Like' and 'Nondrug-like' molecules? J. Med. Chem. 41, 3314–3324 (1998).

    CAS  PubMed  Google Scholar 

  6. Sadowski, J. & Kubinyi, H. Scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41, 3325–3329 (1998).

    CAS  PubMed  Google Scholar 

  7. Newman, D., Cragg, G., Kingston, D. in The Practice of Medicinal Chemistry (ed. Wermuth, C. G.) 91–109 (Academic, London, 2003).

    Google Scholar 

  8. Feher, M. & Schmidt, J. M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    CAS  PubMed  Google Scholar 

  9. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23, 3–25 (1997). Fundamental work describing important physico-chemical properties of drug molecules.

    CAS  Google Scholar 

  10. Lee, M. L. & Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: Application in the design of natural product-based combinatorial libraries J. Comb. Chem. 3, 284–289 (2001).

    CAS  PubMed  Google Scholar 

  11. Stahura, F., Godden, J. W., Ling, X. & Bajorath, J. Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J. Chem. Inf. Comput. Sci. 40, 1245–1252 (2000).

    CAS  PubMed  Google Scholar 

  12. Henkel, T., Brunne, R., Muller, H. & Reichel, F. Statistical investigation of structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. Engl. 38, 643–647 (1999).

    CAS  PubMed  Google Scholar 

  13. Martin, Y. C. Diverse viewpoints on computational aspects of molecular diversity. J. Comb. Chem. 3, 231–250 (2001).

    CAS  PubMed  Google Scholar 

  14. Martin, Y. C. & Critchlow, R. E. Beyond mere diversity: tailoring combinatorial libraries for drug discovery. J. Comb. Chem. 1, 32–45 (1999).

    CAS  PubMed  Google Scholar 

  15. Evans, B. E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988). Fundamental work describing the principle of 'privileged' chemical structures.

    CAS  PubMed  Google Scholar 

  16. Chothia, C. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

    CAS  PubMed  Google Scholar 

  17. Zhang, C. & DeLisi, C. Estimating the number of protein folds. J. Mol. Biol. 284, 1301–1305 (1998).

    CAS  PubMed  Google Scholar 

  18. Salem, G. M., Hutchinson, E. G., Orengo, C. A. & Thornton, J. M. Correlation of observed fold frequency with the occurrence of local structural motifs. J. Mol. Biol. 287, 969–981 (1999).

    CAS  PubMed  Google Scholar 

  19. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996).

    CAS  PubMed  Google Scholar 

  20. Hou, J., Sims, G., Zhang, C. & Kim, S -H. A global representation of the protein fold space. Proc. Natl Acad. Sci. USA 100, 2386–2390 (2003).

    CAS  PubMed  Google Scholar 

  21. Anantharaman, V., Aravind, L. & Koonin, E. V. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Cur. Opin. Chem. Biol. 7, 12–20 (2003).

    CAS  Google Scholar 

  22. Breinbauer, R., Vetter, I. R. & Waldmann, H. From protein domains to drug candidates- Natural products as guiding principles in the design and synthesis of compound libraries. Angew. Chem. Int. Ed. 41, 2878–2890 (2002). Analysis and description of the importance of natural products as scaffolds for drug design.

    CAS  Google Scholar 

  23. Atuegbu, A., MacLean, D., Nguyen, C., Gordon, E. M. & Jacobs, J. W. Combinatorial modification of natural products: Preparation of un-encoded and encoded libraries of Rauwolfia alkaloids. Bioorg. Med. Chem. 4, 1097–1106 (1996).

    CAS  PubMed  Google Scholar 

  24. Xaio, X. Y., Parandoosh, Z. & Nova, M. P. Design and synthesis of a taxoid library using radiofrequency encoded combinatorial chemistry. J. Org. Chem. 62, 6029–6033 (1997).

    Google Scholar 

  25. Xu, R., Grieveldinger, G., Marenus, L. E., Cooper, A. & Ellman, J. A. Combinatorial library approach for the identification of synthetic receptors targeting vancomycin-resistant bacteria. J. Am. Chem. Soc. 121, 4898–4899 (1999).

    CAS  Google Scholar 

  26. Nicolaou, K. C., Winssinger, N. Hughes, R., Smethurst, C. & Cho, S. Y. New selenium-based safety-catch linkers: solid-phase semisynthesis of vancomycin. Angew. Chem. Int. Ed. 39, 1084–1088 (2000).

    CAS  Google Scholar 

  27. Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. -Q. & Barluenga, S. Natural product-like combinatorial libraries based on privileged structures 1. General principles and solid phase synthesis of benzopyrans. J. Am. Chem. Soc. 122, 9939–9953 (2000). A demonstration of the natural products-like chemical diversity achieved by modern combinatorial chemistry.

    CAS  Google Scholar 

  28. Nicolaou, K. C. et al. Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using NanoKans and optical encoding. J. Am. Chem. Soc. 122, 9954–9967 (2000).

    CAS  Google Scholar 

  29. Kissau, L., Stahl, P., Mazitschek, R., Giannis, A. & Waldmann, H. Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold. J. Med. Chem. 46, 2917–2931 (2003).

    CAS  PubMed  Google Scholar 

  30. Peczuh, M. W. & Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000).

    CAS  PubMed  Google Scholar 

  31. Dumont, F. J. FK506, An immunosuppressant targeting calcineurin function. Curr. Med. Chem. 7, 731–748 (2000).

    CAS  PubMed  Google Scholar 

  32. Abraham, R. T. & Wiederrecht, G. J. Immunophamacology of rapamycin. Ann. Rev. Immunol. 14, 483–510 (1996).

    CAS  Google Scholar 

  33. Hersperger, R. & Keller, T. H. Ascomycin derivatives and their use as immunosuppressive agents. Drugs Future 25, 269–277 (2000).

    CAS  Google Scholar 

  34. Takahashi, N. in Macrolide Antibiotics 2nd Edn (ed. Omura, S.) 577–621 (Academic, London, 2002).

    Google Scholar 

  35. Pong, K. & Zaleska, M. M. Therapeutic implications for immunophilin ligands in the treatment of neurodegenerative diseases. Curr. Drug Targets CNS Neurol. Disord. 2, 61–72 (2003).

    Google Scholar 

  36. Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. 2, 1–17 (2002).

    CAS  Google Scholar 

  37. Kowalski, R. J. et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol. 52, 613–622 (1997). Fundamental work describing the mechanism of action of a potent antitubulin agent.

    CAS  PubMed  Google Scholar 

  38. Bai, R., Cichacz, Z. A., Herald, C. L., Pettit, G. R. & Hamel, E. Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol. Pharmacol. 44, 757–66 (1993).

    CAS  PubMed  Google Scholar 

  39. Loganzo, F. et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 63, 1838–1845 (2003).

    CAS  PubMed  Google Scholar 

  40. Sackett, D. L. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol. Therap. 59, 163–228 (1993).

    CAS  Google Scholar 

  41. Silverman, L., Campbell, R. & Broach, J. R. New assay technologies for high throughput screening. Curr. Opin. Chem. Biol. 2, 397–403 (1998).

    CAS  PubMed  Google Scholar 

  42. Cohen, P. Protein kinases- The major drug targets of the 21st century? Nature Rev. Drug Discov. 1, 309–316 (2002).

    CAS  Google Scholar 

  43. Zaman, G. J. R., Garritsen, A., de Boer, T. & van Boeckel, C. A. Fluorescence assays for high throughput screening of protein kinases. Comb. Chem. High Throughput Screen. 6, 313–320 (2003).

    CAS  PubMed  Google Scholar 

  44. Fowler, A. et al. An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal. Biochem. 308, 223–231 (2002).

    CAS  PubMed  Google Scholar 

  45. Turek-Etienne, T. C. et al. Evaluation of fluorescent compound interference in 4 fluoroescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. J. Biomol. Screen. 8, 176–184 (2003).

    CAS  Google Scholar 

  46. Eldridge, G. R. et al. High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal. Chem. 74, 3963–3971 (2002).

    CAS  PubMed  Google Scholar 

  47. Abel, U., Koch, C., Speitling, M. & Hansske, F. G. Modern methods to produce natural-product libraries. Curr. Opin. Chem. Biol. 6, 453–458 (2002).

    CAS  PubMed  Google Scholar 

  48. Cummins, L. L. et al. Multitarget affinity/specificity screening of natural products:Finding and characterizing high affinity ligands from complex mixtures by using high performance mass spectrometry. J. Nat. Prod. 66, 1186–1190 (2003).

    CAS  PubMed  Google Scholar 

  49. Firn, R. D. & Jones, C. D. Natural products — a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003). An analysis of why organisms produce natural products chemical diversity.

    CAS  PubMed  Google Scholar 

  50. Chabala, J. C. et al. Ivermectin, a new broad-spectrum antiparasitic agent. J. Med. Chem. 23, 1134–1136 (1980).

    CAS  PubMed  Google Scholar 

  51. He, H. et al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc. 124, 9729–9736 (2002).

    CAS  PubMed  Google Scholar 

  52. De Voe, S. E. & Kunstmann, M. P. Antibiotic AC98 and production. US Patent 3,495,004 (1970).

  53. Ruzin, A. et al. Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant Gram-positive bacteria. Antimicrob. Agent. Chemother. 48, 728–738 (2004).

    CAS  Google Scholar 

  54. He, H. et al. Mannopeptimycin esters and carbonates, potent antibiotic agents against drug resistant bacteria. Bioorg. Med. Chem. Lett. 14, 279–282 (2004).

    CAS  PubMed  Google Scholar 

  55. Sum, P. E., et al. Synthesis and evaluation of ether and halogenated derivatives of mannopeptimycin glycopeptide antibiotic. Biorg. Med. Chem. Lett. 13, 2805–2808 (2003).

    CAS  Google Scholar 

  56. Dushin, R. G. et al. Hydrophobic acetal and ketal derivatives of mannopeptimycin-α and AC98-0053: semisynthetic glycopeptides with potent activity against Gram-positive bacteria. J. Med. Chem. 47, 3487–3490 (2004). An extensive illustration of the capabilities of NMR spectroscopy in the structure elucidation of complex natural products.

    CAS  PubMed  Google Scholar 

  57. Strege, M. A. High-performance liquid chromatographic-electrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J. Chrom. B 725, 67–68 (1999).

    CAS  Google Scholar 

  58. Nielsen, K. F. & Smedsgaard, J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chrom. A 1002, 111–136 (2003).

    CAS  Google Scholar 

  59. Freeman, R. & Morris, G. A. Two-dimensional Fourier transformation in NMR. Bull. Magn. Res. 1, 1–26 (1979).

    Google Scholar 

  60. Bax, A., Aszalos, A., Dinya, Z. & Sudo, K. Structure elucidation of the antibiotic desertomycin through the use of new two-dimensional NMR techniques. J. Am. Chem. Soc. 108, 8056–8063 (1986).

    CAS  Google Scholar 

  61. Schwalbe, H. & Kessler, H. 900 MHz NMR spectrometer in Munich and Frankfurt. Nachrichten aus der Chemie 51, 412–417 (2003).

    CAS  Google Scholar 

  62. Sandvoss, M., Preiss, A., Levsen, K., Weisemann, R. & Spraul, M. Two new asterosaponins from the starfish Asterias rubens: application of a cryogenic NMR probe head. Magn. Res. Chem. 41, 949–954 (2003).

    CAS  Google Scholar 

  63. Olson, D. L. et al. Microflow NMR: concepts and capabilities. Anal. Chem. 76, 2966–2974 (2004).

    CAS  PubMed  Google Scholar 

  64. Serber, Z. et al. New carbon-detected protein NMR experiments using cryoProbes. J. Am. Chem. Soc. 122, 3554–3555 (2000).

    CAS  Google Scholar 

  65. Satake, M. et al. Structural confirmation of maitotoxin based on complete 13C NMR assignments and the three-dimensional PFG NOESY-HMQC spectrum. J. Am. Chem. Soc. 117, 7019–7020 (1995).

    CAS  Google Scholar 

  66. He, H. et al. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora Lomaivitiensis. J. Am. Chem. Soc. 123, 5352–5363 (2001).

    Google Scholar 

  67. McDonald, L. A. et al. FTMS Structure elucidation of natural products: application to muraymycin antibiotics using ESI Multi-CHEF SORI-CIT FTMSn, the Top-Down/Bottom-Up approach, and HPLC ESI capillary-skimmer CID FTMS. Anal. Chem. 75, 2730–2739 (2003). Capabilities of modern mass spectrometry in the structure elucidation of complex natural products.

    CAS  PubMed  Google Scholar 

  68. Gunasekera, A. P., Gunaskera, M., Longley, R. E. & Schulte, G. K. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J. Org. Chem. 55, 4912–4915 (1990).

    CAS  Google Scholar 

  69. Towle, M. J. et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 61, 1013–1021 (2001).

    CAS  PubMed  Google Scholar 

  70. Kuznetsov, G. et al. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res. 64, 5760–5766 (2004).

    CAS  PubMed  Google Scholar 

  71. Schenk, T. et al. A Generic assay for phosphate-consuming or -releasing enzymes coupled on-line to liquid chromatography for lead finding in natural products. Anal. Biochem. 316, 118–126 (2003).

    CAS  PubMed  Google Scholar 

  72. Cummins, L. L. et al. Multitarget affinity/specificity screening of natural products finding and characterizing high-affinity ligands from complex mixtures by using high-performance mass spectrometry. J. Nat. Prod. 66, 1186–1190 (2003).

    CAS  PubMed  Google Scholar 

  73. Schriemer, D. C., Bundle, D. R., Li, L. & Hindsgaul, O. Micro-scale frontal affinity chromatography with mass spectrometric detection: a new method for the screening of compound libraries. Angew. Chem. Int. Ed. 37, 3383–3387 (1998).

    CAS  Google Scholar 

  74. Chan, N. W. C., Lewis, D. F., Rosner, P. J., Kelly, M. A. & Schriemer, D. C. Frontal affinity chromatography–mass spectrometry assay technology for multiple stages of drug discovery: applications of a chromatographic biosensor. Anal. Biochem. 319, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  75. Zhu, L., Chen, L., Luo, H. & Xu, X. Frontal affinity chromatography combined on-line with mass spectrometry: a tool for the binding study of different epidermal growth factor receptor inhibitors. Anal. Chem. 75, 6388–6393 (2003).

    CAS  PubMed  Google Scholar 

  76. Wolfender, J -L., Ndjoko, K. & Hostettmann, K. Liquid chromatography with ultraviolet absorbance–mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J. Chrom. A 1000, 437–455 (2003).

    CAS  Google Scholar 

  77. Exarchou, V., Godejohann, M., van Beek, T. S., Gerothanassis, I. P. & Vervoort, J. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in greek oregano. Anal. Chem. 75, 6288–6294 (2003). Capabilities of hyphenated spectroscopic techniques in the structure elucidation of complex natural product mixtures.

    CAS  PubMed  Google Scholar 

  78. Laude, D. A. & Wilkins, C. L. Direct-linked analytical scale high-performance liquid chromatography/nuclear magnetic resonance spectrometry. Anal. Chem. 56, 2471–2475 (1984).

    CAS  Google Scholar 

  79. Albert, K. Liquid chromatography-nuclear magnetic resonance spectroscopy. J. Chrom. 856, 199–211 (1999).

    CAS  Google Scholar 

  80. Wolfender, J. -L., Ndjoko, K. & Hostettmann, K. The potential of LC-NMR in phytochemical analysis. Phytochem. Anal. 12, 2–22 (2001).

    CAS  PubMed  Google Scholar 

  81. Schaller, F., Wolfender, J. -L., Hostettmann, K. & Mavi, S. New antifungal 'quinone methide' diterpenes from Bobgunnia madagascariensis and study of their interconversion by LC/NMR Helv. Chim. Act. 84, 222–229 (2001).

    CAS  Google Scholar 

  82. Lommen, A., Godejohann, M., Venema, D. P., Hollman, P. C. H., Spraul, M. Application of directly coupled HPLC-NMR–MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal. Chem. 72, 1793–1797 (2000).

    CAS  PubMed  Google Scholar 

  83. Spraul, M. et al. Advancing sensitivity for LC-NMR-MS using a cryoflow probe: application to analysis of acetominophen metabolites in urine. Anal. Chem. 75, 1536–1541 (2003).

    CAS  PubMed  Google Scholar 

  84. Wu, N., Webb, A., Peck, T. L., Sweedler, J. V. Online NMR detection of amino acids and peptides in microbore LC. Anal. Chem. 67, 3101–3107 (1995).

    CAS  PubMed  Google Scholar 

  85. Khosla, C. & Keasling, J. D. Metabolic engineering for drug discovery and development. Nature Rev. Drug Discov. 2, 1019–1025 (2003).

    CAS  Google Scholar 

  86. Nicolaou, K. C. et al. Total synthesis of apoptolidin: construction of enantiomerically pure fragments. J. Am. Chem. Soc. 125, 15433–15442 (2003).

    CAS  PubMed  Google Scholar 

  87. Lin, S. et al. Total syntheses of TMC-95A and B via a new reaction leading to Z-enamides. Some preliminary findings as to SAR. J. Am. Chem. Soc. 126, 6347–6355 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wender, P. A. et al. Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proc. Natl Acad. Sci. USA 85, 7197–201 (1988).

    CAS  PubMed  Google Scholar 

  89. Wender, P. A. et al. The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc. Natl Acad. Sci. USA 95, 6624–6629 (1998).

    CAS  PubMed  Google Scholar 

  90. Wender, P. A., DeBrabander, P. G, Hinkle, K. W., Lippa, B., Pettit, G. R. Synthesis and biological evaluation of fully synthetic bryostatin analogues. Tet. Lett. 39, 8625–8628 (1998).

    CAS  Google Scholar 

  91. Wender, P. A. et al. The practical synthesis of a novel and highly potent analogue of bryostatin. J. Am. Chem. Soc. 124, 13648–13649 (2002). Along with preceding articles, a good example of natural-products-based drug design.

    CAS  PubMed  Google Scholar 

  92. Hommel, U., Weber, H -P., Oberer, L., Naegeli, H. U., Oberhauser, B. & Foster, C. A. The 3D-structure of a natural inhibitor of cell adhesion molecule expression. FEBS Lett. 379, 69–73 (1996).

    CAS  PubMed  Google Scholar 

  93. Chen, Y., Bilban, M., Foster, C. A. & Boger, D. L. Solution-phase parallel synthesis of a pharmacophore library of HUN-7293 analogues: A general chemical mutagenesis approach to defining structure-function properties of naturally occurring cyclic (depsi)peptides. J. Am. Chem. Soc. 124, 5431–5440 (2002).

    CAS  PubMed  Google Scholar 

  94. Smith, III, A. B., Cho, Y. S., Pettit, G. R. & Hirschmann, R. Design, synthesis, and evaluation of azepine-based cryptophycin mimetics. Tetrahedron 59, 6991–7009 (2003).

    CAS  Google Scholar 

  95. Lee, M. D., Durr, F. E., Hinman, L. M., Hanmann, P. R. & Ellestad, G. A. The calicheamicins. Adv. Med. Chem. 2, 31–66 (1993).

    CAS  Google Scholar 

  96. Damle, N. K. & Frost, P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharm. 3, 386–390 (2003).

    CAS  Google Scholar 

  97. Hamann, P. R. et al. Gemtuzumab ozogamicin, A potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconj. Chem. 13, 47–58 (2002).

    CAS  Google Scholar 

  98. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Google Scholar 

  99. Koehler, A. N., Shamji, A. F. & Schreiber, S. L. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J. Am. Chem. Soc. 125, 8420–8421 (2003).

    CAS  PubMed  Google Scholar 

  100. Brik, A. M. et al. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors. Chembiochem 4, 1246–1248 (2003).

    CAS  PubMed  Google Scholar 

  101. Niggemann, J., Michaelis, K., Frank, R., Zander, N. & Höfle, G. Natural product-derived building blocks for combinatorial synthesis. Part 1. Fragmentation of natural products from myxobacteria. J. Chem. Soc. Perkin. Trans. 1, 2490–2503 (2002).

    Google Scholar 

  102. ter Haar, E. et al. Discodermolide, A cytotoxic agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243–250 (1996).

    CAS  PubMed  Google Scholar 

  103. Nerenberg, J. B., Hung, D. T., Somers, P. K., Schreiber, S. L. Total synthesis of the immunosuppressive agent (-)-discodermolide. J. Am. Chem. Soc. 115, 12621–12622 (1993).

    CAS  Google Scholar 

  104. Smith, A. B. et al. Evolution of a gram-scale synthesis of (+)-discodermolide. J. Am. Chem. Soc. 122, 8654–8664 (2000).

    CAS  Google Scholar 

  105. Paterson, I., Florence, G. J., Gerlach, K. & Scott, J. P. Total synthesis of the antimicrotubule agent (+) discodermolide using boron–mediated aldol reactions of chiral ketones. Angew. Chem. Int. Ed. 39, 377 (2000).

    CAS  Google Scholar 

  106. Marshall, J. A. & Johns, B. A. Total synthesis of (+)-discodermolide. J. Org. Chem. 63, 7885–7892 (1998).

    CAS  Google Scholar 

  107. Mickel, S. J. et al. Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1. Org. Proc. Res. Dev. 8, 92–100 (2004).

    CAS  Google Scholar 

  108. Mickel, S. J. et al. Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2. Org. Proc. Res. Dev. 8, 101–106 (2004).

    CAS  Google Scholar 

  109. Mickel, S. J. et al. Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3. Org. Proc. Res. Dev. 8, 107–112 (2004).

    CAS  Google Scholar 

  110. Mickel, S. J. et al. Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4. Org. Proc. Res. Dev. 8, 113–121 (2004).

    CAS  Google Scholar 

  111. Mickel, S. J. et al. Large scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5. Org. Proc. Res. Dev. 8, 122–130 (2004). References 107–111 provide a strong example of successful synthetic scale-up of a natural product for clinical supply.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Pilote for valuable assistance in literature and patent analysis.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Hap3p

TIE2

Glossary

PHARMACOPHORE

The ensemble of steric and electronic features that is necessary to ensure optimal interactions with a specific biological target structure and to trigger (or to block) its biological response.

NEW MOLECULAR ENTITY

(NME). A medication containing an active ingredient that has not been previously approved for marketing in any form.

COMBINATORIAL CHEMISTRY

The generation of large collections, or 'libraries', of compounds by synthesizing combinations of a set of smaller chemical structures.

DRUG-LIKE

Sharing certain characteristics with other molecules that act as drugs. The set of characteristics — size, shape and solubility in water and organic solvents — varies depending on who is evaluating the molecules.

LIPINSKI'S 'RULE-OF-FIVE'

Lipinski's analysis of the World Drug Index led to the 'rule-of-five', which identifies several key properties that should be considered for small molecules that are intended to be orally administered. These properties are: molecular mass <500 Da, number of hydrogen-bond donors <5; number of hydrogen-bond acceptors <10; calculated octanol–water partition coefficient (an indication of the ability of a molecules to cross biological membranes) <5.

FOLD SPACE

The total repertoire of three-dimensional protein structures or architectures.

SOLID-PHASE SYNTHESIS

Synthesis of compounds on the solid surface of an insoluble resin support, which allows them to be readily separated (by filtration or centrifugation) from excess reagents, soluble reaction by-products or solvents.

LIFETIME DISCRIMINATED POLARIZATION

A method of reducing test-compound interference in fluorescence-based screening by rejection of signals from short-lifetime sources.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehn, F., Carter, G. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4, 206–220 (2005). https://doi.org/10.1038/nrd1657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing