Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Encoded evidence: DNA in forensic analysis

A Correction to this article was published on 01 March 2005

Key Points

  • DNA varies between and within species, and so it can be used in forensic work when biological material is associated with a crime or other legal case.

  • Forensic DNA analysis began in 1985 with the development of DNA fingerprinting; most analysis is now carried out with PCR multiplexes of 10–15 autosomal STRs that give a high degree of certainty in individual identification.

  • Many circumstances, including mixtures of DNA from more than one donor, can give rise to anomalous profiles, but these can usually be resolved.

  • Semi-automation of DNA profiling allows the construction of large databases of profiles from suspects, offenders and crime-scene samples; the rules for creating and maintaining these differ from country to country.

  • Analysis of autosomal SNPs, Y chromosome haplotypes and mitochondrial DNA sequence variation are also useful in specific applications.

  • DNA profiling can provide some information about the population of origin of a sample, although direct prediction of phenotypic features is more problematic.

  • The identification of victims of wars, disasters and accidents are greatly facilitated by sensitive DNA profiling methods.

  • Analysis of the DNA of animals, plants and micro-organisms associated with legal cases can provide valuable evidence.

Abstract

Sherlock Holmes said “it has long been an axiom of mine that the little things are infinitely the most important”, but never imagined that such a little thing, the DNA molecule, could become perhaps the most powerful single tool in the multifaceted fight against crime. Twenty years after the development of DNA fingerprinting, forensic DNA analysis is key to the conviction or exoneration of suspects and the identification of victims of crimes, accidents and disasters, driving the development of innovative methods in molecular genetics, statistics and the use of massive intelligence databases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sources of human genetic variation used in forensic analysis.
Figure 2: Electropherograms illustrating autosomal STR profiles.

Similar content being viewed by others

References

  1. Jeffreys, A. J., Wilson, V. & Thein, S. L. Hypervariable 'minisatellite' regions in human DNA. Nature 314, 67–73 (1985). Describes the discovery of hypervariable DNA and a method of detection that is sensitive enough to allow analysis of the small amounts of DNA that might be encountered in casework.

    Article  CAS  PubMed  Google Scholar 

  2. Jeffreys, A. J., Wilson, V. & Thein, S. L. Individual-specific 'fingerprints' of human DNA. Nature 316, 76–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Primorac, D. & Schanfield, M. S. Application of forensic DNA testing in the legal system. Croat. Med. J. 41, 32–46 (2000).

    CAS  PubMed  Google Scholar 

  4. Landsteiner, K. Zur Kenntnis der antifermentativen, lytisichen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl. Bakteriol. 27, 357–362 (1900).

    Google Scholar 

  5. Gill, P., Jeffreys, A. J. & Werrett, D. J. Forensic application of DNA 'fingerprints'. Nature 318, 577–579 (1985). Shows, for the first time, the application of DNA profiling in forensics, demonstrated by analysing stain material. Also, the first description of differential lysis method to separate sperm from vaginal epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  6. Rudin, N. & Inman, K. An Introduction to Forensic DNA Analysis 2nd edn (CRC, Florida, USA, 2002).

    Google Scholar 

  7. Helmuth, R. et al. HLA-DQ alpha allele and genotype frequencies in various human populations, determined by using enzymatic amplification and oligonucleotide probes. Am. J. Hum. Genet. 47, 515–523 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kimpton, C. P. et al. Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl. 3, 13–22 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15, 636–641 (1993).

    CAS  PubMed  Google Scholar 

  10. Cotton, E. A. et al. Validation of the AMPFlSTR SGM plus system for use in forensic casework. Forensic Sci. Int. 112, 151–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Moretti, T. R. et al. Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J. Forensic Sci. 46, 647–660 (2001).

    CAS  PubMed  Google Scholar 

  12. Greenspoon, S. A. et al. Validation and implementation of the PowerPlex 16 BIO System STR multiplex for forensic casework. J. Forensic Sci. 49, 71–80 (2004).

    CAS  PubMed  Google Scholar 

  13. Junge, A., Lederer, T., Braunschweiger, G. & Madea, B. Validation of the multiplex kit genRESMPX-2 for forensic casework analysis. Int. J. Legal Med. 117, 317–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Schneider, P. M. & Martin, P. D. Criminal DNA databases: the European situation. Forensic Sci. Int. 119, 232–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Butler, J. M. Forensic DNA Typing: Biology and Technology Behind STR Markers (Academic Press, 2001).

    Google Scholar 

  16. Balding, D. J. When can a DNA profile be regarded as unique? Sci. Justice 39, 257–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Budowle, B., Chakraborty, R., Carmody, G. & Monson, K. L. Source attribution of a forensic DNA profile. Forensic Sci. Comm. [online] <www.fbi.gov/programs/lab/fsc/backissu/july2000/source.htm> (2000).

  18. Werrett, D., Pinchin, R. & Hale, R. Problem solving: DNA data acquisition and analysis. Profiles DNA 2, 3–6 (1998).

    Google Scholar 

  19. Gill, P. et al. A new method of STR interpretation using inferential logic — development of a criminal intelligence database. Int. J. Legal Med. 109, 14–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Gill, P., Sparkes, R. & Kimpton, C. Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci. Int. 89, 185–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, P. & Williams, R. Post-conviction DNA testing: the UK's first 'exoneration' case? Sci. Justice 44, 77–82 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Werrett, D. J. The National DNA Database. Forensic Sci. Int. 88, 33–42 (1997).

    Article  Google Scholar 

  23. Forensic Science Service. The National DNA Database. annual report 2002–03. (2003). <http://www.forensic.gov.uk/forensic/news/press_releases/ 2003/NDNAD_Annual_Report_02-03.pdf>

  24. Forensic Science Service. First successful prosecution after use of pioneering DNA technique. <http://www.forensic.gov.uk/forensic_t/inside/news/list_press_release.php?case=23&y=2004> (2004).

  25. Gill, P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int. J. Legal Med. 114, 204–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, C., Lareu, V., Sala, A. & Carracedo, A. Nonbinary single-nucleotide polymorphism markers. Prog. Forensic Genet. 10, 27–29 (2004).

    Google Scholar 

  27. Butler, J. M., Shen, Y. & McCord, B. R. The development of reduced size STR amplicons as tools for analysis of degraded DNA. J. Forensic Sci. 48, 1054–1064 (2003).

    CAS  PubMed  Google Scholar 

  28. Gill, P., Werrett, D. J., Budowle, B. & Guerrieri, R. An assessment of whether SNPs will replace STRs in national DNA databases — joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Sci. Justice 44, 51–53 (2004).

    Article  PubMed  Google Scholar 

  29. Roewer, L. et al. Online reference database of Y-chromosomal short tandem repeat (STR) haplotypes. Forensic Sci. Int. 118, 103–111 (2001). Describes the Y-chromosomal DNA reference database that has become indispensable to the analysis of Y-STR DNA profiles.

    Google Scholar 

  30. Home Office. Criminal Statistics England and Wales 2002 (The Stationery Office, London, 2003).

  31. Shewale, J. G., Sikka, S. C., Schneida, E. & Sinha, S. K. DNA profiling of azoospermic semen samples from vasectomized males by using Y-PLEX 6 amplification kit. J. Forensic Sci. 48, 127–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Prinz, M., Ishii, A., Coleman, A., Baum, H. J. & Shaler, R. C. Validation and casework application of a Y chromosome specific STR multiplex. Forensic Sci. Int 120, 177–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kayser, M. et al. A comprehensive survey of human Y-chromosomal microsatellites. Am. J. Hum. Genet. 74, 1183–1197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kayser, M. et al. Online Y-chromosomal short tandem repeat haplotype reference database (YHRD) for US populations. J. Forensic Sci. 47, 513–519 (2002).

    Article  PubMed  Google Scholar 

  35. Krawczak, M. Forensic evaluation of Y-STR haplotype matches: a comment. Forensic Sci. Int. 118, 114–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. de Knijff, P. Son, give up your gun: presenting Y-STR results in court. Profiles DNA 6, 3–5 (2003).

    Google Scholar 

  37. Jobling, M. A. In the name of the father: surnames and genetics. Trends Genet. 17, 353–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sykes, B. & Irven, C. Surnames and the Y chromosome. Am. J. Hum. Genet. 66, 1417–1419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jobling, M. A. & Tyler-Smith, C. The human Y chromosome: an evolutionary marker comes of age. Nature Rev. Genet. 4, 598–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sinha, S. K. et al. Development and validation of a multiplexed Y-chromosome STR genotyping system, Y-PLEX 6, for forensic casework. J. Forensic Sci. 48, 93–103 (2003).

    CAS  PubMed  Google Scholar 

  41. Butler, J. M. Recent developments in Y-Short Tandem Repeat and Y-Single Nucleotide Polymorphism analysis. Forensic Sci. Rev. 15, 91–111 (2003).

    CAS  PubMed  Google Scholar 

  42. Richards, M. & Macaulay, V. The mitochondrial gene tree comes of age. Am. J. Hum. Genet. 68, 1315–1320 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holland, M. M. & Parsons, T. J. Mitochondrial DNA sequence analysis — validation and use for forensic casework. Forensic Sci. Rev. 11, 21–49 (1999).

    CAS  PubMed  Google Scholar 

  44. Budowle, B., Allard, M. W., Wilson, M. R. & Chakraborty, R. Forensics and mitochondrial DNA: applications, debates and foundations. Annu. Rev. Genomics Hum. Genet. 4, 119–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Vallone, P. M., Just, R. S., Coble, M. D., Butler, J. M. & Parsons, T. J. A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. Int. J. Legal Med. 118, 147–157 (2004).

    Article  PubMed  Google Scholar 

  46. Coble, M. D. et al. Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int. J. Legal Med. 118, 137–146 (2004).

    Article  PubMed  Google Scholar 

  47. Budowle, B. et al. Mitochondrial DNA regions HVI and HVII population data. Forensic Sci. Int. 103, 23–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Monson, K. L., Miller, K. W. P., Wilson, M. R., DiZinno, J. A. & Budowle, B. The mtDNA population database: an integrated software and database resource of forensic comparison. Forensic Sci. Comm. 4, [online] <http://www.fbi.gov/hq/lab/fsc/backissu/april2002/miller1.htm> (2002).

  49. Parson, W. et al. The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Sci. Int. 139, 215–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Yao, Y. -G., Bravi, C. M. & Bandelt, H. J. A call for mtDNA data quality control in forensic science. Forensic Sci. Int. 141, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Tully, G. et al. Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts. Forensic Sci. Int. 140, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Tully, G. et al. Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci. Int. 124, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ivanov, P. L. et al. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature Genet. 12, 417–420 (1996). DNA analysis of the remains of Georgij Romanov solves one of the biggest historical mysteries of the twentieth century.

    Article  CAS  PubMed  Google Scholar 

  54. Lewontin, R. C. The apportionment of human diversity. Evol. Biol. 6, 381–398 (1972).

    Google Scholar 

  55. Barbujani, G., Magagni, A., Minch, E. & Cavalli-Sforza, L. L. An apportionment of human DNA diversity. Proc. Natl Acad. Sci. USA 94, 4516–4519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bamshad, M., Wooding, S., Salisbury, B. A. & Stephens, J. C. Deconstructing the relationship between genetics and race. Nature Rev. Genet. 5, 598–609 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lowe, A. L., Urquhart, A., Foreman, L. A. & Evett, I. W. Inferring ethnic origin by means of an STR profile. Forensic Sci. Int. 119, 17–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Shriver, M. D. et al. Ethnic-affiliation estimation by use of population-specific DNA markers. Am. J. Hum. Genet. 60, 957–964 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins-Schramm, H. E. et al. Ethnic-difference markers for use in mapping by admixture linkage disequilibrium. Am. J. Hum. Genet. 70, 737–750 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shriver, M. D. & Kittles, R. A. Genetic ancestry and the search for personalized genetic histories. Nature Rev. Genet. 5, 611–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sturm, R. A., Teasdale, R. D. & Box, N. F. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 277, 49–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Valverde, P., Healy, E., Jackson, I., Rees, J. L. & Thody, A. J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genet. 11, 328–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Bastiaens, M. et al. The melanocortin-1 receptor gene is the major freckle gene. Hum. Mol. Genet. 10, 1701–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Grimes, E. A., Noake, P. J., Dixon, L. & Urquhart, A. Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Sci. Int. 122, 124–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Eiberg, H. & Mohr, J. Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q. Eur. J. Hum. Genet. 4, 237–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Rebbeck, T. R. et al. P gene as an inherited biomarker of human eye color. Cancer Epidemiol. Biomarkers Prev. 11, 782–784 (2002).

    CAS  PubMed  Google Scholar 

  67. Frudakis, T. et al. Sequences associated with human iris pigmentation. Genetics 165, 2071–2083 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Menotti-Raymond, M. A., David, V. A. & O'Brien, S. J. Pet cat hair implicates murder suspect. Nature 386, 774 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. DeNise, S. et al. Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Anim. Genet. 35, 14–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Wetton, J. H. et al. Mitochondrial profiling of dog hairs. Forensic Sci. Int. 133, 235–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Parson, W., Pegoraro, K., Niederstatter, H., Foger, M. & Steinlechner, M. Species identification by means of the cytochrome b gene. Int. J. Legal Med. 114, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Branicki, W., Kupiec, T. & Pawlowski, R. Validation of cytochrome b sequence analysis as a method of species identification. J. Forensic. Sci. 48, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wetton, J. H., Tsang, C. S. F., Roney, C. A. & Spriggs, A. C. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci. Int. 140, 139–145 (2004).

    Article  PubMed  Google Scholar 

  74. Hsieh, H. -M. et al. Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci. Int. 136, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Korpelainen, H. & Virtanen, V. DNA fingerprinting of mosses. J. Forensic Sci. 48, 804–807 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Congiu, L., Chicca, M., Cella, R., Rossi, R. & Bernacchia, G. The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol. Ecol. 9, 229–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Lekha, Kumar, M., Kathirvel, M., Rao, G. V. & Nagaraju, J. DNA profiling of disputed chilli samples (Capsicum annum) using ISSR-PCR and FISSR-PCR marker assays. Forensic Sci. Int. 116, 63–68 (2001).

    Article  Google Scholar 

  78. Linacre, A. & Thorpe, J. Detection and identificaion of cannabis by DNA. Forensic Sci. Int. 91, 71–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Hsieh, H. -M. et al. A highly polymorphic STR locus in Cannabis sativa. Forensic Sci. Int. 131, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ou, C. Y. et al. Molecular epidemiology of HIV transmission in a dental practice. Science 256, 1165–1171 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Keim, P. Microbial Forensics: a scientific assessment (American Academy of Microbiology, Washington, DC, USA, 2003).

    Google Scholar 

  82. Goedecke, N. et al. A high-performance multilane microdevice system designed for the DNA forensics laboratory. Electrophoresis 25, 1678–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Paegel, B. M., Blazej, R. G. & Mathies, R. A. Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr. Opin. Biotechnol. 14, 42–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schneider, P. M. et al. Whole genome amplification — the solution for a common problem in forensic casework? Prog. Forensic Genet. 10, 24–26 (2004).

    Google Scholar 

  86. Juusola, J. & Ballantyne, J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci. Int. 135, 85–96 (2003). Provides an insight into the potential of mRNA to analyse the type of body fluid in crime-scene samples.

    Article  CAS  PubMed  Google Scholar 

  87. Ackerman, M. J., Tester, D. J. & Driscoll, D. J. Molecular autopsy of sudden unexplained death in the young. Am. J. Forensic Med. Pathol. 22, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Lunetta, P., Levo, A., Männikkö, A., Penttilä, A. & Sajantila, A. Death in bathtub revisited with molecular genetics: a victim with suicidal traits and a LQTS mutation. Forensic Sci. Int. 130, 122–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Levo, A., Koski, A., Ojanpera, I., Vuori, E. & Sajantila, A. Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci. Int. 135, 9–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Lander, E. S. & Budowle, B. DNA fingerprinting dispute laid to rest. Nature 371, 735–738 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Foreman, L. A. & Evett, I. W. Statistical analyses to support forensic interpretation for a new ten-locus STR profiling system. Int. J. Legal Med. 114, 147–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Balding, D. J. & Donnelly, P. Inferring identity from DNA profile evidence. Proc. Natl Acad. Sci. USA 92, 11741–11745 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garbolino, P. & Taroni, F. Evaluation of scientific evidence using Bayesian networks. Forensic Sci. Int. 125, 149–155 (2002).

    Article  PubMed  Google Scholar 

  94. Evett, I. W., Gill, P. D., Jackson, G., Whitaker, J. & Champod, C. Interpreting small quantities of DNA: the hierarchy of propositions and the use of Bayesian networks. J. Forensic Sci. 47, 520–530 (2002).

    Article  PubMed  Google Scholar 

  95. Clayton, T. M., Whitaker, J. P., Sparkes, R. L. & Gill, P. Analysis and intepretation of mixed forensic stains using DNA STR profiling. Forensic Sci. Int. 91, 55–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Evett, I. W., Buffery, C., Willot, G. & Stoney, D. A. A guide to interpreting single locus profiles of DNA mixtures in forensic cases. J. Forensic Sci. 31, 41–47 (1991).

    Article  CAS  Google Scholar 

  97. Weir, B. S., Triggs, C. M., Starling, L., Stowell, K. A. J. & Buckleton, J. Interpreting DNA mixtures. J. Forensic Sci. 42, 213–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Evett, I. W., Gill, P. & Lambert, J. A. Taking account of peak areas when interpreting mixed DNA profiles. J. Forensic Sci. 43, 62–69 (1998).

    CAS  PubMed  Google Scholar 

  99. Gill, P., Sparkes, R. & Buckleton, J. S. Interpretation of simple mixtures when artefacts such as a stutters are present — with special reference to multiplex STRs used by the Forensic Science Service. Forensic Sci. Int. 95, 213–224 (1998).

    Article  Google Scholar 

  100. Perlin, M. W. & Szabady, B. Linear mixture analysis: a mathematical approach to resolving mixed DNA samples. J. Forensic Sci. 46, 1372–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Bill, M., Gill, P. & Curran, J. L. PENDULUM — a guideline based approach to the interpretation of STR mixtures. Forensic Sci. Int. (in the press).

  102. Gill, P., Whitaker, J., Flaxman, C., Brown, N. & Buckleton, J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 112, 17–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Schmidt, T., Hummel, S. & Herrmann, B. Evidence of contamination in PCR laboratory disposables. Naturwissenschaften 82, 423–431 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Gill, P. & Kirkham, A. Development of a simulation model to assess the impact of contamination in casework using STRs. J. Forensic Sci. 49, 485–491 (2004).

    CAS  PubMed  Google Scholar 

  105. Curran, J. M., Gill, P. & Bill, M. R. Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci. Int. (in the press).

  106. Clayton, T. M., Hill, S. M., Denton, L. A., Watson, S. K. & Urquhart, A. J. Primer binding site mutations affecting the typing of STR loci contained within the AMPFlSTR SGM Plus kit. Forensic Sci. Int. 139, 255–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Leibelt, C. et al. Identification of a D8S1179 primer binding site mutation and the validation of a primer designed to recover null alleles. Forensic Sci. Int. 133, 220–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Rolf, B., Wiegand, P. & Brinkmann, B. Somatic mutations at STR loci — a reason for three-allele pattern and mosaicism. Forensic Sci. Int. 126, 200–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Gill, P. Role of short tandem repeat DNA in forensic casework in the UK — past, present, and future perspectives. Biotechniques 32, 366–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Santos, F. R., Pandya, A. & Tyler-Smith, C. Reliability of DNA-based sex tests. Nature Genet. 18, 103 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Steinlechner, M., Berger, B., Niederstatter, H. & Parson, W. Rare failures in the amelogenin sex test. Int. J. Legal. Med. 116, 117–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Thangaraj, K., Reddy, A. G. & Singh, L. Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis? Int. J. Legal. Med. 116, 121–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Dauber, E. M. et al. Discrepant results of samples taken from different tissues of a single individual. Prog. Forensic Genet. 10, 48–49 (2004).

    Google Scholar 

  114. Linacre, A. The UK National DNA Database. Lancet 361, 1841–1842 (2003).

    Article  PubMed  Google Scholar 

  115. Pascali, V. L., Lago, G. & Dobosz, M. The dark side of the UK National DNA Database. Lancet 362, 834 (2003).

    Article  PubMed  Google Scholar 

  116. Johnson, P., Martin, P. & Williams, R. Genetics and forensics: making the National DNA Database. Sci. Studies 16, 22–37 (2003).

    Google Scholar 

  117. Guillén, M., Lareu, M. V., Pestoni, C., Salas, S. & Carracedo, A. Ethical-legal problems of DNA databases in criminal investigation. J. Med. Ethics 26, 266–271 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Newton, G. DNA fingerprinting and national DNA databases (The Wellcome Trust, 2004).

    Google Scholar 

  119. Connor, S. Take everyone's DNA fingerprint, says pioneer. The Independent (London, UK, 3 February 2003).

    Google Scholar 

  120. Hagelberg, E., Gray, I. C. & Jeffreys, A. J. Identification of the skeletal remains of a murder victim by DNA analysis. Nature 352, 427–429 (1991). The first analysis of bone samples to identify a murder victim, conducted using mitochondrial DNA analysis.

    Article  CAS  PubMed  Google Scholar 

  121. Clayton, T. M., Whitaker, J. & Maguire, C. N. Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR) loci. Forensic Sci. Int. 76, 7–15 (1995). The first use of STRs on a mass disaster case, demonstrating their usefulness in identifying highly degraded remains.

    Article  CAS  PubMed  Google Scholar 

  122. Olaisen, B., Stenersen, M. & Mevåg, B. Identification by DNA analysis of the victims of the August 1996 Spitzbergen civil aircraft disaster. Nature Genet. 15, 402–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Leclair, B., Frégeau, C. J., Bowen, K. L. & Fourney, R. M. Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: the Swissair Flight 111 disaster. J. Forensic Sci. 49, doi:10.1520/JFS2003311 (2004).

  124. Huffine, E., Crews, J., Kennedy, B., Bomberger, K. & Zinbo, A. Mass identification of persons missing from the break-up of the former Yugoslavia: structure, function, and role of the International Commission on Missing Persons. Croat. Med. J. 42, 271–275 (2001).

    CAS  PubMed  Google Scholar 

  125. Marchi, E. Methods developed to identify victims of the World Trade Center disaster. Am. Labor. 36, 30–36 (2004).

    Google Scholar 

  126. Budimlija, Z. M. et al. World Trade Center human identification project: experiences with individual body identification cases. Croat. Med. J. 44, 259–263 (2003).

    PubMed  Google Scholar 

  127. Brenner, C. H. & Weir, B. S. Issues and strategies in the identification of World Trade Center victims. Theor. Popul. Biol. 63, 173–178 (2003). Provides a valuable insight into the interpretation problems that might arise in a major mass disaster, and how they can be solved.

    Article  CAS  PubMed  Google Scholar 

  128. Leclair, B. Large-scale comparative genotyping and kinship analysis: evolution in its use for human identification in mass fatality incidents and missing persons databasing. Prog. Forensic Genet. 10, 42–44 (2004).

    Google Scholar 

  129. Bille, T. et al. Novel method of DNA extraction from bones assisted DNA identification of World Trade Center victims. Prog. Forensic Genet. 10, 553–555 (2004).

    Google Scholar 

  130. Gill, P. et al. Identification of the remains of the Romanov family by DNA analysis. Nature Genet. 6, 130–135 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Gill, P. et al. Establishing the identity of Anna Anderson Manahan. Nature Genet. 9, 9–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Mourant, A. E., Kopec, A. C. & Domaniewska–Sobczak, K. The distribution of the human blood groups and other polymorphisms (Oxford Univ. Press, London, 1976).

    Google Scholar 

  133. Harris, H. & Hopkinson, D. A. Handbook of enzyme electrophoresis in human genetics (North-Holland Pub. Co., Amsterdam / New York, 1976).

    Google Scholar 

  134. Edwards, A., Civitello, A., Hammond, H. A. & Caskey, C. T. DNA typing and genetic-mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Roewer, L. & Epplen, J. T. Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work. Forensic Sci. Int. 53, 163–171 (1992).

    Article  CAS  PubMed  Google Scholar 

  136. National Research Council Committee on DNA Technology in Forensic Science. DNA Technology in Forensic Science, (National Academy Press, Washington, DC, USA, 1992).

  137. National Research Council Committee on DNA Technology in Forensic Science. The Evaluation of Forensic DNA Evidence, (National Academy Press, Washington, DC, USA, 1996). Many of the recommendations of this NRC report have been incorporated into casework and it has provided a reference point for the development of DNA profiling.

  138. van Oorschot, R. A. H. & Jones, M. J. DNA fingerprints from fingerprints. Nature 387, 767 (1997). The first demonstration that DNA profiles can be obtained from fingerprints on touched surfaces. This rapidly led to the development of low copy number methods.

    Article  CAS  PubMed  Google Scholar 

  139. Findlay, I., Frazier, R., Taylor, A. & Urquhart, A. Single cell DNA fingerprinting for forensic applications. Nature 389, 555–556 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Martin, P. D. National DNA databases — practice and practicability. A forum for discussion. Prog. Forensic Genet. 10, 1–8 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank Alec Jeffreys, Chris Tyler-Smith and four anonymous reviewers for helpful comments on the manuscript. We apologize to colleagues whose work we were unable to cite owing to space restrictions. M.A.J. is supported by a Wellcome Trust Senior Fellowship in Basic Biomedical Science.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

STRBase

Entrez

MC1R

OMIM

Long QT syndrome

FURTHER INFORMATION

UK Forensic Science Service

Innocence Project

International Organization for Standardization

Glossary

DNA FINGERPRINTING

Generation of a pattern of bands, by Southern blotting and hybridization with a multilocus probe, which is highly individual-specific.

FORENSIC GENETICS

The application of genetics for the resolution of legal cases.

PATERNITY TESTING

Determining whether or not a particular man is the father of a child, using genetic analysis. This generally uses similar autosomal markers to individual identification work.

MATCH PROBABILITY

The chance of two unrelated people sharing a DNA profile.

MINISATELLITES

Loci made up of a number (10–1,000) of tandemly repeated sequences, each typically 10–100 bp in length. Usually GC-rich and often hypervariable.

DIFFERENTIAL LYSIS

A method to enrich for sperm DNA in a mixture of sperm and epithelial cells by preferentially lysing the latter using detergent and protease, so that sperm nuclei can be recovered by centrifugation.

ISO17025

A global standard, established by the International Organization for Standardization, for the technical competence of calibration and testing laboratories (see Online links box).

HLA-DQA1 GENE

A polymorphic gene within the MHC class II region on chromosome 6, encoding a human leukocyte antigen cell-surface protein.

SHORT TANDEM REPEAT

A DNA sequence containing a variable number (typically ≤50) of tandemly repeated short (2–6 bp) sequences, such as (GATA)n; forensic STRs are usually tetranucleotide repeats, which show little PCR stutter.

POPULATION STRUCTURE

The absence of random mating within a population, leading to allele frequency differences among subpopulations.

SIMPLE STRS

Short tandem repeat loci composed of uninterrupted runs of a single repeat type.

COMPLEX STRS

Short tandem repeat loci containing more than one run of repeats that can be of one or more repeat type.

ALLELIC LADDER

An accurate marker used to identify alleles at a particular STR, generated by PCR amplification of a series of sequenced alleles from that STR.

ELECTROPHEROGRAM

The graphical output of electrophoresis devices in STR and sequencing analysis, showing fluorescence intensity as a function of molecular weight; peak at a particular wavelength (colour) corresponds to a specifically labelled molecule of a particular size.

HETEROZYGOTE BALANCE

The proportion of the two alleles of a heterozygote, expressed as the area of the smaller peak divided by the area of the larger peak in an electropherogram.

PCR STUTTER

A PCR artefact in which, as well as a band of the expected size, an additional band is seen which is typically one repeat unit smaller, resulting from slippage synthesis errors by the PCRpolymerase

DROP-IN

Addition of (typically) one or two alleles to a DNA profile, owing to contamination.

HAPLOTYPE

The combination of allelic states of a set of polymorphic markers lying on the same DNA molecule, such as the Y chromosome or mtDNA

BAYESIAN

Statistical method, based on Bayes' theorem, that allows inferences to be drawn from both the data themselves and any prior information.

CONTROL REGION

Part of mitochondrial DNA that is non-coding and therefore more able to accumulate variation than the rest of the molecule.

EFFECTIVE POPULATION SIZE

The size of an idealized population that has the same properties with respect to genetic drift as does the actual population in question.

GENETIC DRIFT

The stochastic fluctuation of allele frequencies in a population owing to chance variations in the contribution of each individual to the next generation.

ADMIXTURE

The formation of a hybrid population through the mixing of two ancestral populations.

LINKAGE DISEQUILIBRIUM MAPPING

Analysing single nucleotide polymorphism alleles in population-based studies to identify loci that are associated with a particular disease or phenotype.

ANCESTRY INFORMATIVE MARKERS

Markers showing marked allele frequency differences between ancestral populations, useful for determining the probable ancestry of an individual.

MELANOCYTE

The specialized cell type, lying at the boundary between the dermis and epidermis, in which the pigment melanin is synthesized.

RANDOM AMPLIFIED POLYMORPHIC DNA

Polymorphic markers generated by using short (8–12 bases long) primers to amplify random fragments of DNA.

MULTIPLE DISPLACEMENT AMPLIFICATION

A method for whole-genome amplification using a highly processive polymerase from bacteriophage φ29 and random primers to synthesize long molecules from the template.

DROP-OUT

Absence of one or more alleles in a DNA profile, owing to stochastic failure of PCR amplification when the number of template molecules is small.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobling, M., Gill, P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5, 739–751 (2004). https://doi.org/10.1038/nrg1455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing