Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of Parkinson disease: paradigm shifts and future prospects

Key Points

  • Parkinson disease (PD) is the second most prevalent, age-associated, neurodegenerative disorder after Alzheimer disease.

  • PD is the major cause of parkinsonism, the clinical features of which include resting tremor, slowness and rigidity. Disease onset is insidious and progressive, and clinical symptoms are highly variable.

  • Epidemiology and twin studies once refuted a genetic aetiology, but pathogenic mutations were recently described in 7 genes. In the last decade, monogenic parkinsonism has become the most frequent definitive cause of sporadic and familial PD.

  • Symptomatic therapy is currently based on neurotransmitter (dopamine) replacement, but temporal improvement is limited and typically incurs troubling side effects as the disease progresses.

  • Molecular findings continue to nominate targets for rational drug design: primarily pharmacogenomic and neuroprotective therapies.

  • The pathology of PD consists of neuronal loss in the substantia nigra with Lewy body inclusions, whereas many forms of parkinsonism are associated with tauopathy. However, both lesions can represent alternative end points of the same genetic cause.

Abstract

Parkinson disease is a complex, multifactorial neurodegenerative disease. Although a heritable basis was originally thought unlikely, recent studies have implicated several genes in its pathogenesis, and molecular findings now allow accurate diagnosis and challenge past criteria for defining Parkinson disease. Most importantly, genetic insights provide the rationale for new strategies for prevention or therapy, and have led to animal models of disease in which these strategies can be tested. Neuroprotective therapies can now be designed to slow or halt disease progression in affected subjects and asymptomatic carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main brain regions affected in Parkinson disease.
Figure 2: SNCA copy number is linked to disease severity, symptoms and age of onset.
Figure 3: Pathways to Parkinson disease.

Similar content being viewed by others

References

  1. Tanner, C. M. Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Adv. Neurol. 91, 133–142 (2003).

    PubMed  Google Scholar 

  2. Wirdefeldt, K., Gatz, M., Schalling, M. & Pedersen, N. L. No evidence for heritability of Parkinson disease in Swedish twins. Neurology 63, 305–311 (2004).

    Article  PubMed  Google Scholar 

  3. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004). Describes the identification of the PARK8 gene, LRRK2 , as a cause of late-onset Parkinson disease that might be associated with a pleomorphic pathology.

    Article  CAS  PubMed  Google Scholar 

  4. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003). Describes the discovery of α-synuclein multiplication mutations, which showed that simple overexpression of the wild-type protein is sufficient to cause disease. This work also suggests that Parkinson disease and dementia with Lewy bodies share the same aetiology.

    Article  CAS  PubMed  Google Scholar 

  6. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Maraganore, D. et al. High-resolution whole genome association study of Parkinson's disease. Am. J. Hum. Genet. 77, 685–693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fahn, S. Description of Parkinson's disease as a clinical syndrome. Ann. NY Acad. Sci. 991, 1–14 (2003). An excellent review of the clinical symptomatology of Parkinson disease.

    Article  CAS  PubMed  Google Scholar 

  13. Van Den Eeden, S. K. et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015–1022 (2003).

    Article  PubMed  Google Scholar 

  14. Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y. & Lees, A. J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125, 861–870 (2002).

    Article  PubMed  Google Scholar 

  15. Chen, L. & Feany, M. B. α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neurosci. 8, 657–663 (2005). Provides functional insights to suggest that α-synuclein inclusions and Lewy bodies might be protective rather than pathogenic.

    Article  CAS  PubMed  Google Scholar 

  16. Firestone, J. A. et al. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch. Neurol. 62, 91–95 (2005).

    Article  PubMed  Google Scholar 

  17. Jankovic, J. Searching for a relationship between manganese and welding and Parkinson's disease. Neurology 64, 2021–2028 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Priyadarshi, A., Khuder, S. A., Schaub, E. A. & Priyadarshi, S. S. Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Allam, M. F., Campbell, M. J., Hofman, A., Del Castillo, A. S. & Fernandez-Crehuet Navajas, R. Smoking and Parkinson's disease: systematic review of prospective studies. Mov. Disord. 19, 614–621 (2004).

    Article  PubMed  Google Scholar 

  20. Leroux, P.-D. Contribution à l'Étude des Causes de la Paralysie Agitante. Thèse de Paris, Imprimeur de la Faculté de Médecine (1880) (in French).

    Google Scholar 

  21. Allen, W. Inheritance of the shaking palsy. Arch. Int. Med. 60, 424–436 (1937).

    Article  Google Scholar 

  22. Mjones, H. Paralysis Agitans. A clinical and genetic study. Acta Psychiatr. Neurol. Scand. Supplement 54, 1–195 (Ejnar Munksgaard, Copenhagen, 1949).

  23. Piccini, P., Burn, D. J., Ceravolo, R., Maraganore, D. & Brooks, D. J. The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol. 45, 577–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Sveinbjornsdottir, S. et al. Familial aggregation of Parkinson's disease in Iceland. N. Engl. J. Med. 343, 1765–1770 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Rocca, W. A. et al. Familial aggregation of Parkinson's disease: The Mayo Clinic family study. Ann. Neurol. 56, 495–502 (2004).

    Article  PubMed  Google Scholar 

  27. Simon, D. K., Lin, M. T. & Pascual-Leone, A. 'Nature versus nurture' and incompletely penetrant mutations. J. Neurol. Neurosurg. Psychiatry 72, 686–689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valente, E. M. et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 56, 336–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Maraganore, D. M. et al. UCHL1 is a Parkinson's disease susceptibility gene. Ann. Neurol. 55, 512–521 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nature Rev. Neurosci. 3, 932–942 (2002).

    Article  CAS  Google Scholar 

  31. Sidhu, A., Wersinger, C., Moussa, C. E. & Vernier, P. The role of α-synuclein in both neuroprotection and neurodegeneration. Ann. NY Acad. Sci. 1035, 250–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Bostantjopoulou, S. et al. Clinical features of parkinsonian patients with the α-synuclein (G209A) mutation. Mov. Disord. 16, 1007–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hope, A. & Farrer, M. in Molecular Mechanisms in Parkinson's Disease (eds Philipp, K. & Haass, C.) (Landes Bioscience, Georgetown, Texas, 2004).

    Google Scholar 

  36. Lashuel, H. A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Farrer, M. et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Chartier-Harlin, M. C. et al. α-Synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ibanez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Nishioka, K. et al. Clinical heterogeneity of α-synuclein gene duplication in autosomal dominant familial Parkinson's disease. Ann. Neurol. 59, 298–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. McKeith, I. G. et al. Dementia with Lewy bodies. Semin. Clin. Neuropsychiatry 8, 46–57 (2003).

    Article  PubMed  Google Scholar 

  43. Poewe, W. Treatment of dementia with Lewy bodies and Parkinson's disease dementia. Mov. Disord. 20, S77–S82 (2005).

    Article  PubMed  Google Scholar 

  44. Pals, P. et al. α-Synuclein promoter confers susceptibility to Parkinson's disease. Ann. Neurol. 56, 591–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Mueller, J. C. et al. Multiple regions of α-synuclein are associated with Parkinson's disease. Ann. Neurol. 57, 535–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Chiba-Falek, O., Kowalak, J. A., Smulson, M. E. & Nussbaum, R. L. Regulation of α-synuclein expression by poly (ADP ribose) polymerase-1 (PARP-1) binding to the NACP-Rep1 polymorphic site upstream of the SNCA gene. Am. J. Hum. Genet. 76, 478–492 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mellick, G. D., Maraganore, D. M. & Silburn, P. A. Australian data and meta-analysis lend support for α-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neurosci. Lett. 375, 112–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lakso, M. et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem. 86, 165–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Fernagut, P. O. & Chesselet, M. F. α-Synuclein and transgenic mouse models. Neurobiol. Dis. 17, 123–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yamada, M., Iwatsubo, T., Mizuno, Y. & Mochizuki, H. Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J. Neurochem. 91, 451–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Perez, R. G. & Hastings, T. G. Could a loss of α-synuclein function put dopaminergic neurons at risk? J. Neurochem. 89, 1318–1324 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, M. et al. Phosphorylation of α-synuclein characteristic of synucleinopathy lesions is recapitulated in αsynuclein transgenic Drosophila. Neurosci. Lett. 336, 155–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Auluck, P. K., Meulener, M. C. & Bonini, N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem. 280, 2873–2878 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Nonaka, T., Iwatsubo, T. & Hasegawa, M. Ubiquitination of α-synuclein. Biochemistry 44, 361–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Funayama, M. et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann. Neurol. 51, 296–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672–680 (2005). This work shows that a common founder was responsible for the most frequent mutation to cause Parkinson disease that has been identified so far: LRRK2 Gly2019Ser. It also provides an age-associated penetrance estimate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paisan-Ruiz, C. et al. Familial Parkinson's disease: clinical and genetic analysis of four Basque families. Ann. Neurol. 57, 365–372 (2005).

    Article  PubMed  Google Scholar 

  61. Funayama, M. et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol. 57, 918–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Mata, I. F. et al. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 6, 171–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Gilks, W. P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415–416 (2005).

    CAS  PubMed  Google Scholar 

  64. Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365, 412–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Nichols, W. C. et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 365, 410–412 (2005).

    CAS  PubMed  Google Scholar 

  66. Farrer, M. et al. LRRK2 mutations in Parkinson disease. Neurology 65, 738–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Tomiyama, H. et al. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 different countries. Mov. Disord. 2006 (doi: 10.1002/mds.20886).

  68. Ozelius, L. J. et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 354, 424–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lesage, S. et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med. 354, 422–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Lesage, S. et al. G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Ann. Neurol. 58, 784–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Aasly, J. O. et al. Clinical features of LRRK2-associated Parkinson's disease in central Norway. Ann. Neurol. 57, 762–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Gloeckner, C. J. et al. The Parkinson disease causing LRRK2 mutation I20202T is associated with increased kinase activity. Hum. Mol. Genet. 15, 223–232 (2006). References 72 and 73 show that LRRK2 substitutions might enhance kinase activity, which indicates the therapeutic possibility of kinase inhibition as a neuroprotective therapy in Parkinson disease.

    Article  CAS  PubMed  Google Scholar 

  74. Ross, O. A. et al. Lrrk2 and Lewy body disease. Ann. Neurol. 59, 388–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Wszolek, Z. K. et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 62, 1619–1622 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hasegawa, K. & Kowa, H. Autosomal dominant familial Parkinson disease: older onset of age, and good response to levodopa therapy. Eur. Neurol. 38, 39–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Giasson, B. I. et al. Biochemical and pathological characterization of Lrrk2. Ann. Neurol. 59, 315–322 (2005).

    Article  CAS  Google Scholar 

  78. Bosgraaf, L. et al. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO J. 21, 4560–4570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Katzenschlager, R. & Lees, A. J. Olfaction and Parkinson's syndromes: its role in differential diagnosis. Curr. Opin. Neurol. 17, 417–423 (2004).

    Article  PubMed  Google Scholar 

  80. Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Mata, I. F., Lockhart, P. J. & Farrer, M. J. Parkin genetics: one model for Parkinson's disease. Hum. Mol. Genet. 13, R127–R133 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Abou-Sleiman, P. M., Healy, D. G. & Wood, N. W. Causes of Parkinson's disease: genetics of DJ-1. Cell Tissue Res 318, 185–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin–protein ligase. Nature Genet. 25, 302–305 (2000). Functional insights from the first gene to be implicated in early-onset parkinsonism, Parkin, highlighted the role of the ubiquitin–proteasome pathway in pure nigral neuronal degeneration.

    Article  CAS  PubMed  Google Scholar 

  84. Pramstaller, P. P. et al. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann. Neurol. 58, 411–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Sriram, S. R. et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum. Mol. Genet. 14, 2571–2586 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Ubiquitin–proteasome system and Parkinson's diseases. Exp. Neurol. 191, S17–S27 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kahle, P. J. & Haass, C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep. 5, 681–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968–7978 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Lo Bianco, C. et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 17510–17515 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Greene, J. C., Whitworth, A. J., Andrews, L. A., Parker, T. J. & Pallanck, L. J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14, 799–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Valente, E. M. et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35–p36. Am. J. Hum. Genet. 68, 895–900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hatano, Y. et al. Novel PINK1 mutations in early-onset parkinsonism. Ann. Neurol. 56, 424–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Petit, A. et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson's disease-related mutations. J. Biol. Chem. 280, 34025–34032 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Beilina, A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA 102, 5703–5708 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Deng, H., Jankovic, J., Guo, Y., Xie, W. & Le, W. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun. 337, 1133–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Kessler, K. R. et al. Dopaminergic function in a family with the PARK6 form of autosomal recessive Parkinson's syndrome. J. Neural Transm. 112, 1345–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Khan, N. L. et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann. Neurol. 52, 849–853 (2002).

    Article  PubMed  Google Scholar 

  98. Lockhart, P. J. et al. DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J. Med. Genet. 41, e22 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tao, X. & Tong, L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease. J. Biol. Chem. 278, 31372–31379 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, L. et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet. 14, 2063–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Goldberg, M. S. et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45, 489–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA 102, 13670–13675 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Meulener, M. et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol. 15, 1572–1577 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Dekker, M. C. et al. PET neuroimaging and mutations in the DJ-1 gene. J. Neural Transm. 111, 1575–1581 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Rizzu, P. et al. DJ-1 colocalizes with tau inclusions:a link between parkinsonism and dementia. Ann. Neurol. 55, 113–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Scott, W. K. et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 286, 2239–2244 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Hicks, A. A. et al. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann. Neurol. 52, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. DeStefano, A. L. et al. PARK3 influences age at onset in Parkinson disease: a genome scan in the GenePD study. Am. J. Hum. Genet. 70, 1089–1095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Y. J. et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet. 70, 985–993 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pankratz, N. et al. Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum. Mol. Genet. 12, 2599–2608 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Martinez, M. et al. Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. J. Med. Genet. 41, 900–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hutton, M. Molecular genetics of chromosome 17 tauopathies. Ann. NY Acad. Sci. 920, 63–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Skipper, L. et al. Linkage disequilibrium and association of MAPT H1 in Parkinson disease. Am. J. Hum. Genet. 75, 669–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rademakers, R. et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum. Mol. Genet. 14, 3281–3292 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Shen, J. & Cookson, M. R. Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 43, 301–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Uitti, R. J., Calne, D. B., Dickson, D. W. & Wszolek, Z. K. Is the neuropathological 'gold standard' diagnosis dead? Implications of clinicopathological findings in an autosomal dominant neurodegenerative disorder. Parkinsonism Relat. Disord. 10, 461–463 (2004).

    Article  PubMed  Google Scholar 

  119. Forman, M. S., Lee, V. M. & Trojanowski, J. Q. Nosology of Parkinson's disease: looking for the way out of a quackmire. Neuron 47, 479–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Trojanowski, J. Q. & Lee, V. M. Transgenic models of tauopathies and synucleinopathies. Brain Pathol. 9, 733–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Parkkinen, L., Kauppinen, T., Pirttila, T., Autere, J. M. & Alafuzoff, I. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57, 82–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Olanow, C. W. et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov. Disord. 19, 997–1005 (2004).

    Article  PubMed  Google Scholar 

  125. Fahn, S. The spectrum of levodopa-induced dyskinesias. Ann. Neurol. 47, S2–S9; discussion S9–S11 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Walter, B. L. & Vitek, J. L. Surgical treatment for Parkinson's disease. Lancet Neurol. 3, 719–728 (2004).

    Article  PubMed  Google Scholar 

  127. Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson's disease. Neuron 46, 857–868 (2005). A demonstration of the power of genetic insights in nominating targets for translational advances and creating the models in which to test them.

    Article  CAS  PubMed  Google Scholar 

  128. Ross, O. A. & Farrer, M. J. Pathophysiology, pleiotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochem. Soc. Trans. 33, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Silva, R. M., Kuan, C. Y., Rakic, P. & Burke, R. E. Mixed lineage kinase-c-jun N-terminal kinase signaling pathway: a new therapeutic target in Parkinson's disease. Mov. Disord. 20, 653–664 (2005).

    Article  PubMed  Google Scholar 

  130. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  131. Hirsch, E. C. et al. Animal models of Parkinson's disease in rodents induced by toxins: an update. J. Neural Transm. Suppl. 65, 89–100 (2003).

    Article  Google Scholar 

  132. Hirano, A., Kurland, L. T., Krooth, R. S. & Lessell, S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 84, 642–661 (1961).

    Article  CAS  PubMed  Google Scholar 

  133. Ince, P. G. & Codd, G. A. Return of the cycad hypothesis — does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol. Appl. Neurobiol. 31, 345–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Hof, P. R. et al. Amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol. (Berl.) 88, 397–404 (1994).

    Article  CAS  Google Scholar 

  135. Sebeo, J., Hof, P. R. & Perl, D. P. Occurrence of α-synuclein pathology in the cerebellum of Guamanian patients with parkinsonism-dementia complex. Acta Neuropathol. (Berl.) 107, 497–503 (2004).

    Article  CAS  Google Scholar 

  136. Caparros-Lefebvre, D. et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125, 801–811 (2002).

    Article  PubMed  Google Scholar 

  137. Economo Von, C. Encephalytis Lethargica: its Sequelae and Treatment (Oxford University Press, London, 1931).

    Google Scholar 

  138. Dale, R. C. et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127, 21–33 (2004).

    Article  PubMed  Google Scholar 

  139. Josephs, K. A., Parisi, J. E. & Dickson, D. W. α-Synuclein studies are negative in postencephalic parkinsonism of von Economo. Neurology 59, 645–646 (2002).

    Article  PubMed  Google Scholar 

  140. Henry, J. M. & Jellinger, K. in Neurodegeneration: The molecular pathology of dementia and movement disorders (ed. Dickson, D.) (ISN Neuropath Press, Basel, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer disease

diffuse Lewy body disease

Parkinson disease

FURTHER INFORMATION

Familial Parkinson's Disease Laboratory

Glossary

Linkage mapping

A method for localizing genes that is based on the coinheritance of genetic markers and phenotypes in families over several generations.

Association study

A gene-discovery strategy that compares cases with controls to assess the contribution of genetic variants to phenotypes in specific populations. Such studies can test for association with variants in a candidate gene, or with large sets of variants that are located throughout the genome.

Bradykinesia

Slowing of and difficulty in initiating movement that is characteristic of Parkinson disease.

Substantia nigra

The region of the brain that includes the pars compacta and harbours the neurons that produce the neurotransmitter dopamine, which is required for controlled movement. Substantia nigra neurons degenerate in Parkinson disease.

Proteasome

Part of the ubiquitin–proteasome system, in which ubiquitin molecules are attached to a target protein that is subsequently degraded by the proteasome complex.

Relative risk

The ratio of the risk of developing a disease in individuals who have been exposed to a risk factor to that in individuals who have not been exposed to the risk factor.

Longitudinal twin studies

The concordance rate of disease in monozygotic versus dizygotic pairs of twins, which is assessed longitudinally over time.

Cross-sectional twin studies

An assessment of the concordance rate of disease in monozygotic versus dizygotic pairs of twins, carried out at a specific time point.

Penetrance

The frequency with which individuals that carry a given gene will show the manifestations that are associated with the gene. If a disease allele is 100% penetrant then all individuals carrying that allele will express the associated disorder.

Diffuse Lewy body disease

Brain-stem and cortical Lewy body pathology typically associated with clinical dementia and parkinsonism, and with parkinsonism with dementia.

Astrocytosis

The process whereby supporting glial cells in the CNS become activated in response to insult.

Dopaminergic

Refers to neurons that predominantly use dopamine as a neurotransmitter.

Argyrophilic grains disease

A late-onset dementia, with tau-positive 'grains' in neuronal processes and coiled bodies in oligodendrocytes post mortem.

Compound heterozygous

Refers to individuals that carry a diploid genotype in which the two copies of a gene carry different mutations.

Positron emission tomography

Imaging of the emission of positrons from the brain after a small amount of radioactive isotope has been injected into the blood stream. This method is used to quantitatively measure metabolic, biochemical and functional activity in living tissue.

Dyskinesia

Uncontrolled or excessive involuntary movement, which is typically induced as a side-effect of long-term L-DOPA administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrer, M. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7, 306–318 (2006). https://doi.org/10.1038/nrg1831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing