Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic defects in the human glycome

A Corrigendum to this article was published on 01 August 2006

Key Points

  • More than 1% of the human genome encodes proteins that make, modify or bind to glycans. In the past decade nearly 30 disease-causing genes in 6 distinct glycan biosynthetic pathways have been discovered. It is likely that many more will be identified in the coming years.

  • There is enormous diversity of clinical phenotypes in patients with glycosylation defects. The disorders cut across many medical subspecialties, making it difficult for physicians to easily recognise and diagnose glycosylation disorders.

  • Identifying the molecular and genetic basis of many glycosylation defects has relied heavily on complementation testing using yeast mutants and mammalian cell lines carrying mutations that affect glycosylation.

  • Although most genetic glycosylation disorders are autosomal recessive, a few are dominant and/or sex linked. Several glycosylation disorders are uniquely associated with mutations that affect a single enzyme. However, recent discoveries point to inherited and somatic mutations in genes that encode cytoplasmic and endoplasmic-reticulum- and Golgi-associated proteins that chaperone multiple components of various glycan biosynthetic pathways.

  • Several well-studied types of muscular dystrophy are now known to result from defects in the glycosylation of α-dystroglycan, one of the vital components of the dystrophin glycoprotein complex.

  • Many mouse gene knockouts for components of glycan biosynthetic pathways are lethal and therefore unsuitable models for the human diseases that result from mutations in the same genes. In the future, better models might be provided by creating mice that carry hypomorphic alleles of these genes.

  • A few glycosylation disorders are remarkably responsive to simple dietary supplements: free sugars — but not the indigestible 'glyconutrients' that are promoted by some companies — can be used to reverse the effect of some glycosylation disorders. However, for most disorders of this type no therapy is available; an increased understanding of the biology of these diseases is needed to gain insights into potential pathways to treatment.

Abstract

The spectrum of all glycan structures — the glycome — is immense. In humans, its size is orders of magnitude greater than the number of proteins that are encoded by the genome, one percent of which encodes proteins that make, modify, localize or bind sugar chains, which are known as glycans. In the past decade, over 30 genetic diseases have been identified that alter glycan synthesis and structure, and ultimately the function of nearly all organ systems. Many of the causal mutations affect key biosynthetic enzymes, but more recent discoveries point to defects in chaperones and Golgi-trafficking complexes that impair several glycosylation pathways. As more glycosylation disorders and patients with these disorders are identified, the functions of the glycome are starting to be revealed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of glycan biosynthetic pathways.
Figure 2: O-mannose and O-xylose biosynthetic pathways.
Figure 3: Sites of genetic defects in the N-linked glycan biosynthetic pathway.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

References

  1. Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C. & Sasisekharan, R. Glycomics: an integrated systems approach to structure–function relationships of glycans. Nature Methods 2, 817–824 (2005). A 'one-stop shopping' guide that explains how to connect structure–function relationships in glycobiology.

    CAS  PubMed  Google Scholar 

  2. Wopereis, S., Lefeber, D. J., Morava, E. & Wevers, R. A. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin. Chem. 52, 574–600 (2006).

    CAS  PubMed  Google Scholar 

  3. Jaeken, J. Komrower Lecture. Congenital disorders of glycosylation (CDG): it's all in it! J. Inherit. Metab. Dis. 26, 99–118 (2003).

    CAS  PubMed  Google Scholar 

  4. Muntoni, F. Journey into muscular dystrophies caused by abnormal glycosylation. Acta Myol. 23, 79–84 (2004).

    CAS  PubMed  Google Scholar 

  5. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002).

    CAS  PubMed  Google Scholar 

  6. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985). A classic description of N -glycan biosynthesis; this review is clear and detailed.

    CAS  PubMed  Google Scholar 

  7. Chavan, M. & Lennarz, W. The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem. Sci. 31, 17–20 (2006).

    CAS  PubMed  Google Scholar 

  8. Kelleher, D. J. & Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006).

    CAS  PubMed  Google Scholar 

  9. Schachter, H., Vajsar, J. & Zhang, W. The role of defective glycosylation in congenital muscular dystrophy. Glycoconj. J. 20, 291–300 (2004).

    CAS  PubMed  Google Scholar 

  10. Chai, W. et al. High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263, 879–888 (1999).

    CAS  PubMed  Google Scholar 

  11. Marth, J. D. in Essentials of Glycobiology (eds Varki, A. et al.) 101–113 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  12. Esko, J. in Essentials of Glycobiology (eds Varki, A. et al.) 145–160 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  13. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    CAS  PubMed  Google Scholar 

  14. Varki, A. in Essentials of Glycobiology (eds Varki, A. et al.) 115–129 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  15. Hakomori, S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 21, 125–137 (2004).

    CAS  PubMed  Google Scholar 

  16. Hwa, K. Y. Glycosyl phosphatidylinositol-linked glycoconjugates: structure, biosynthesis and function. Adv. Exp. Med. Biol. 491, 207–214 (2001).

    CAS  PubMed  Google Scholar 

  17. Hancock, J. F. GPI-anchor synthesis: Ras takes charge. Dev. Cell 6, 743–745 (2004).

    CAS  PubMed  Google Scholar 

  18. Jaeken, J. & Matthijs, G. Congenital disorders of glycosylation. Annu. Rev. Genomics Hum. Genet. 2, 129–151 (2001).

    CAS  PubMed  Google Scholar 

  19. Aebi, M. et al. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: an updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj. J. 16, 669–671 (1999).

    CAS  PubMed  Google Scholar 

  20. Hagberg, B. A., Blennow, G., Kristiansson, B. & Stibler, H. Carbohydrate-deficient glycoprotein syndromes: peculiar group of new disorders. Pediatr. Neurol. 9, 255–262 (1993).

    CAS  PubMed  Google Scholar 

  21. Freeze, H. H. Update and perspectives on congenital disorders of glycosylation. Glycobiology 11, 129R–143R (2001).

    CAS  PubMed  Google Scholar 

  22. Jaeken, J., Matthijs, G., Carchon, H. & Schaftingen, E. V. in The Metabolic & Molecular Bases of Inherited Diseases (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 1601–1622 (McGraw-Hill Medical Publishing Division, New York, 2001).

    Google Scholar 

  23. Marquardt, T. & Denecke, J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162, 359–379 (2003).

    CAS  PubMed  Google Scholar 

  24. Grünewald, S., Schollen, E., Van Schaftingen, E., Jaeken, J. & Matthijs, G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am. J. Hum. Genet. 68, 347–354. (2001).

    PubMed  PubMed Central  Google Scholar 

  25. van Ommen, C. H. et al. Carbohydrate-deficient glycoprotein syndrome type 1a: a variant phenotype with borderline cognitive dysfunction, cerebellar hypoplasia, and coagulation disturbances. J. Pediatr. 136, 400–403 (2000).

    CAS  PubMed  Google Scholar 

  26. Briones, P. et al. Biochemical and molecular studies in 26 Spanish patients with congenital disorder of glycosylation type Ia. J. Inherit. Metab. Dis. 25, 635–646 (2002).

    CAS  PubMed  Google Scholar 

  27. Coman, D., Klingberg, S., Morris, D., McGill, J. & Mercer, H. Congenital disorder of glycosylation type Ia in a 6-year-old girl with a mild intellectual phenotype: two novel PMM2 mutations. J. Inherit. Metab. Dis. 28, 1189–1190 (2005).

    CAS  PubMed  Google Scholar 

  28. Matthijs, G., Schollen, E., Heykants, L. & Grünewald, S. Phosphomannomutase deficiency: the molecular basis of the classical Jaeken syndrome (CDGS type Ia). Mol. Genet. Metab. 68, 220–226 (1999).

    CAS  PubMed  Google Scholar 

  29. Pirard, M. et al. Effect of mutations found in carbohydrate-deficient glycoprotein syndrome type IA on the activity of phosphomannomutase 2. FEBS Lett. 452, 319–322 (1999).

    CAS  PubMed  Google Scholar 

  30. Kjaergaard, S., Skovby, F. & Schwartz, M. Carbohydrate-deficient glycoprotein syndrome type 1A: expression and characterisation of wild type and mutant PMM2 in E. coli. Eur. J. Hum. Genet. 7, 884–888 (1999).

    CAS  PubMed  Google Scholar 

  31. Westphal, V. et al. Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genet. Med. 3, 393–398 (2001).

    CAS  PubMed  Google Scholar 

  32. Schollen, E., Kjaergaard, S., Legius, E., Schwartz, M. & Matthijs, G. Lack of Hardy–Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). Eur. J. Hum. Genet. 8, 367–371 (2000).

    CAS  PubMed  Google Scholar 

  33. Westphal, V., Xiao, M., Kwok, P. Y. & Freeze, H. H. Identification of a frequent variant in ALG6, the cause of congenital disorder of glycosylation-Ic. Hum. Mutat. 22, 420–421 (2003).

    PubMed  Google Scholar 

  34. Niehues, R. et al. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101, 1414–1420 (1998). First description of a novel glycosylation disease, its genetic basis, and a successful 'low-tech' treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Denecke, J. et al. Congenital disorder of glycosylation type Id: clinical phenotype, molecular analysis, prenatal diagnosis, and glycosylation of fetal proteins. Pediatr. Res. 58, 248–253 (2005).

    CAS  PubMed  Google Scholar 

  36. Tan, J., Dunn, J., Jaeken, J. & Schachter, H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am. J. Hum. Genet. 59, 810–817 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaeken, J. et al. Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch. Dis. Child. 71, 123–127 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansske, B. et al. Deficiency of UDP-galactose:N-acetylglucosamine β-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J. Clin. Invest. 109, 725–733 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lübke, T. et al. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nature Genet. 28, 73–76 (2001).

    PubMed  Google Scholar 

  40. Martinez-Duncker, I. et al. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105, 2671–2676 (2005).

    CAS  PubMed  Google Scholar 

  41. Marquardt, T. et al. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94, 3976–3985 (1999).

    CAS  PubMed  Google Scholar 

  42. Marquardt, T. et al. Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J. Pediatr. 134, 681–688 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Etzioni, A. et al. Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N. Engl. J. Med. 327, 1789–1792 (1992).

    CAS  PubMed  Google Scholar 

  44. Willig, T. B. et al. Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes — a new syndrome? Blood 97, 826–828 (2001).

    CAS  PubMed  Google Scholar 

  45. Spaapen, L. J. et al. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J. Inherit. Metab. Dis. 28, 707–714 (2005).

    CAS  PubMed  Google Scholar 

  46. Wu, X. et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nature Med. 10, 518–523 (2004). First description of a patient with a defect in trafficking of glycosyltransferases and nucleotide sugar transporters.

    CAS  PubMed  Google Scholar 

  47. Steet, R. & Kornfeld, S. COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol. Biol. Cell 17, 2312–2321 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ungar, D., Oka, T., Krieger, M. & Hughson, F. M. Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120 (2006).

    CAS  PubMed  Google Scholar 

  49. Oka, T. et al. Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem. 280, 32736–32745 (2005).

    CAS  PubMed  Google Scholar 

  50. Shestakova, A., Zolov, S. & Lupashin, V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204 (2006).

    CAS  PubMed  Google Scholar 

  51. Kubota, Y., Sano, M., Goda, S., Suzuki, N. & Nishiwaki, K. The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133, 263–273 (2006).

    CAS  PubMed  Google Scholar 

  52. Wopereis, S. et al. Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49, 1839–1845 (2003).

    CAS  PubMed  Google Scholar 

  53. Morava, E. et al. Defective protein glycosylation in patients with cutis laxa syndrome. Eur. J. Hum. Genet. 13, 414–421 (2005).

    CAS  PubMed  Google Scholar 

  54. Wopereis, S. et al. Patients with unsolved congenital disorders of glycosylation type II can be subdivided in six distinct biochemical groups. Glycobiology 15, 1312–1319 (2005).

    CAS  PubMed  Google Scholar 

  55. Matthijs, G. et al. Deficiencies in different subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorder of Glycosylation. Am. Soc. Genet. Annu. Meeting 27 October 2005; available from the ASGH Abstract Search and Personal Itinerary Planner web page, http://www.ashg.org/genetics/ashg05s.

  56. Foulquier, F. et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc. Natl Acad. Sci. USA 103, 3764–3769 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sacher, M. Membrane traffic fuses with cartilage development. FEBS Lett. 550, 1–4 (2003).

    CAS  PubMed  Google Scholar 

  58. Mandato, C. et al. Cryptogenic liver disease in four children: a novel congenital disorder of glycosylation. Pediatr. Res. 59, 293–298 (2006).

    PubMed  Google Scholar 

  59. Wang, Y. et al. Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11, 1051–1070 (2001).

    CAS  PubMed  Google Scholar 

  60. Becker, D. J. & Lowe, J. B. Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003).

    CAS  PubMed  Google Scholar 

  61. Lühn, K., Wild, M. K., Eckhardt, M., Gerardy-Schahn, R. & Vestweber, D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nature Genet. 28, 69–72. (2001).

    PubMed  Google Scholar 

  62. Freeze, H. H. & Aebi, M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15, 490–498 (2005).

    CAS  PubMed  Google Scholar 

  63. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol. 4, 202–212 (2003).

    CAS  Google Scholar 

  64. Kudo, M., Brem, M. S. & Canfield, W. M. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-Hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase α/β-subunits precursor gene. Am. J. Hum. Genet. 78, 451–463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tiede, S. et al. Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase. Nature Med. 11, 1109–1112 (2005).

    CAS  PubMed  Google Scholar 

  66. Fukuda, M. N. HEMPAS. Hereditary erythroblastic multinuclearity with positive acidified serum lysis test. Biochim. Biophys. Acta 1455, 231–239 (1999).

    CAS  PubMed  Google Scholar 

  67. Chui, D. et al. α-Mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90, 157–167 (1997).

    CAS  PubMed  Google Scholar 

  68. Leslie, N. D. Insights into the pathogenesis of galactosemia. Annu. Rev. Nutr. 23, 59–80 (2003).

    CAS  PubMed  Google Scholar 

  69. Lai, K., Langley, S. D., Khwaja, F. W., Schmitt, E. W. & Elsas, L. J. GALT deficiency causes UDP-hexose deficit in human galactosemic cells. Glycobiology 13, 285–294 (2003).

    CAS  PubMed  Google Scholar 

  70. Sturiale, L. et al. Hypoglycosylation with increased fucosylation and branching of serum transferrin N-glycans in untreated galactosemia. Glycobiology 15, 1268–1276 (2005). Patients with uncontrolled galactosaemia show severe underglycosylation of serum proteins, which provides insights into the potential cause of pathogenesis in this disorder.

    CAS  PubMed  Google Scholar 

  71. Prestoz, L. L., Couto, A. S., Shin, Y. S. & Petry, K. G. Altered follicle stimulating hormone isoforms in female galactosaemia patients. Eur. J. Pediatr. 156, 116–120 (1997).

    CAS  PubMed  Google Scholar 

  72. Ridel, K. R., Leslie, N. D. & Gilbert, D. L. An updated review of the long-term neurological effects of galactosemia. Pediatr. Neurol. 33, 153–161 (2005).

    PubMed  Google Scholar 

  73. Senger, R. S. & Karim, M. N. Variable site-occupancy classification of N-linked glycosylation using artificial neural networks. Biotechnol. Prog. 21, 1653–1662 (2005).

    CAS  PubMed  Google Scholar 

  74. Jones, J., Krag, S. S. & Betenbaugh, M. J. Controlling N-linked glycan site occupancy. Biochim. Biophys. Acta 1726, 121–137 (2005).

    CAS  PubMed  Google Scholar 

  75. Nishikawa, A. & Mizuno, S. The efficiency of N-linked glycosylation of bovine DNase I depends on the Asn-Xaa-Ser/Thr sequence and the tissue of origin. Biochem. J. 355, 245–248 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Welch, W. J. Role of quality control pathways in human diseases involving protein misfolding. Semin. Cell Dev. Biol. 15, 31–38 (2004).

    CAS  PubMed  Google Scholar 

  77. Lonnqvist, L. et al. A point mutation creating an extra N-glycosylation site in fibrillin-1 results in neonatal Marfan syndrome. Genomics 36, 468–475 (1996).

    CAS  PubMed  Google Scholar 

  78. Raghunath, M., Kielty, C. M. & Steinmann, B. Truncated profibrillin of a Marfan patient is of apparent similar size as fibrillin: intracellular retention leads to over-N-glycosylation. J. Mol. Biol. 248, 901–909 (1995).

    CAS  PubMed  Google Scholar 

  79. Vogt, G. et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature Genet. 37, 692–700 (2005). A surprising discovery: mutations that create occupied N -glycosylation sites are pathological. Random insertion of glycans might disrupt assembly of signalling complexes.

    CAS  PubMed  Google Scholar 

  80. Morgan, R. et al. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    CAS  PubMed  Google Scholar 

  81. Martin, P. T. & Freeze, H. H. Glycobiology of neuromuscular disorders. Glycobiology 13, 67R–75R (2003).

    CAS  PubMed  Google Scholar 

  82. Muntoni, F. & Voit, T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul. Disord. 14, 635–649 (2004).

    PubMed  Google Scholar 

  83. van Reeuwijk, J., Brunner, H. G. & van Bokhoven, H. Glyc-O-genetics of Walker–Warburg syndrome. Clin. Genet. 67, 281–289 (2004).

    Google Scholar 

  84. Muntoni, F., Brockington, M., Torelli, S. & Brown, S. C. Defective glycosylation in congenital muscular dystrophies. Curr. Opin. Neurol. 17, 205–209 (2004).

    CAS  PubMed  Google Scholar 

  85. Willer, T. et al. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl Acad. Sci. USA 101, 14126–14131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Manya, H. et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl Acad. Sci. USA 101, 500–505 (2004).

    CAS  PubMed  Google Scholar 

  87. van Reeuwijk, J. et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker–Warburg syndrome. J. Med. Genet. 42, 907–912 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoshida, A. et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1, 717–724 (2001).

    CAS  PubMed  Google Scholar 

  89. Taniguchi, K. et al. Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum. Mol. Genet. 12, 527–534 (2003).

    CAS  PubMed  Google Scholar 

  90. Liu, J. et al. A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech. Dev. 123, 228–240 (2006).

    CAS  PubMed  Google Scholar 

  91. Mercuri, E. et al. Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch. Neurol. 63, 251–257 (2006).

    PubMed  Google Scholar 

  92. Kanagawa, M. et al. Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117, 953–964 (2004).

    CAS  PubMed  Google Scholar 

  93. Barresi, R. et al. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10, 696–703 (2004). References 92 and 93 stress the importance of LARGE and provide insights into how it might function.

    CAS  PubMed  Google Scholar 

  94. Nguyen, H. H., Jayasinha, V., Xia, B., Hoyte, K. & Martin, P. T. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc. Natl Acad. Sci. USA 99, 5616–5621 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rando, T. A. Artificial sweeteners — enhancing glycosylation to treat muscular dystrophies. N. Engl. J. Med. 351, 1254–1256 (2004).

    CAS  PubMed  Google Scholar 

  96. Engvall, E. & Wewer, U. M. The new frontier in muscular dystrophy research: booster genes. FASEB J. 17, 1579–1584 (2003).

    CAS  PubMed  Google Scholar 

  97. Gotte, M. & Kresse, H. Defective glycosaminoglycan substitution of decorin in a patient with progeroid syndrome is a direct consequence of two point mutations in the galactosyltransferase I (β4GalT-7) gene. Biochem. Genet. 43, 65–77 (2005).

    PubMed  Google Scholar 

  98. Zak, B. M., Crawford, B. E. & Esko, J. D. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim. Biophys. Acta 1573, 346–355 (2002).

    CAS  PubMed  Google Scholar 

  99. Jaeken, J. & Carchon, H. Congenital disorders of glycosylation: a booming chapter of pediatrics. Curr. Opin. Pediatr. 16, 434–439 (2004).

    PubMed  Google Scholar 

  100. Lin, X. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol. 224, 299–311 (2000).

    CAS  PubMed  Google Scholar 

  101. Stickens, D., Zak, B. M., Rougier, N., Esko, J. D. & Werb, Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132, 5055–5068 (2005).

    CAS  PubMed  Google Scholar 

  102. Dawson, P. A. & Markovich, D. Pathogenetics of the human SLC26 transporters. Curr. Med. Chem. 12, 385–396 (2005).

    CAS  PubMed  Google Scholar 

  103. Venkatachalam, K. V. Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55, 1–11 (2003).

    CAS  PubMed  Google Scholar 

  104. Ten Hagen, K. G., Fritz, T. A. & Tabak, L. A. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13, 1R–16R (2003).

    CAS  PubMed  Google Scholar 

  105. Fukumoto, S. Post-translational modification of Fibroblast Growth Factor 23. Ther. Apher. Dial. 9, 319–322 (2005).

    CAS  PubMed  Google Scholar 

  106. Ju, T. & Cummings, R. D. Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005). This paper indicates that somatic mutations that affect a glycosyltransferase-specific chaperone might be involved in autoimmune disease.

    CAS  PubMed  Google Scholar 

  107. Simpson, M. A. et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nature Genet. 36, 1225–1229 (2004).

    CAS  PubMed  Google Scholar 

  108. Yamashita, T. et al. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc. Natl Acad. Sci. USA 102, 2725–2730 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Proia, R. L. Gangliosides help stabilize the brain. Nature Genet. 36, 1147–1148 (2004).

    CAS  PubMed  Google Scholar 

  110. Smith, L. J. Paroxysmal nocturnal hemoglobinuria. Clin. Lab. Sci. 17, 172–177 (2004).

    PubMed  Google Scholar 

  111. Hanaoka, N. et al. Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP. Blood 107, 1184–1191 (2006).

    CAS  PubMed  Google Scholar 

  112. Taniguchi, N., Nakamura, K., Narimatsu, H., von der Lieth, C. W. & Paulson, J. Human Disease Glycomics/Proteome Initiative workshop and the 4th HUPO annual congress. Proteomics 6, 12–13 (2006).

    CAS  PubMed  Google Scholar 

  113. Sweet collaborations [Editorial]. Nature Methods 2, 799 (2005).

  114. Young, W. W. Jr. Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J. Membr. Biol. 198, 1–13 (2004).

    CAS  PubMed  Google Scholar 

  115. Sprong, H. et al. Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol. Biol. Cell 14, 3482–3493 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739. (2001). This paper reveals that modest changes in glycan structure can have dramatic, clinically important effects on signalling.

    CAS  PubMed  Google Scholar 

  117. Ohtsubo, K. et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123, 1307–1321 (2005).

    CAS  PubMed  Google Scholar 

  118. Reumers, J. et al. SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res. 33, D527–D532 (2005).

    CAS  PubMed  Google Scholar 

  119. Westphal, V. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am. J. Pathol. 157, 1917–1925 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bode, L. & Freeze, H. H. Applied glycoproteomics — approaches to study genetic–environmental collisions causing protein-losing enteropathy. Biochim. Biophys. Acta 1760, 547–559 (2005).

    PubMed  Google Scholar 

  121. Lenz, D. et al. Protein-losing enteropathy in patients with Fontan circulation: is it triggered by infection? Crit. Care 7, 185–190 (2003).

    PubMed  PubMed Central  Google Scholar 

  122. Eklund, E. A. & Freeze, H. H. The congenital disorders of glycosylation — a multifaceted group of syndromes. NeuroRx 3, 254–263 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am indebted to G. Srikrishna, L. Bode, and C. Kranz for critical reading of this manuscript, E. Eklund for figure designs and the National Institutes of Health for support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Amish infantile epilepsy syndrome

CDG-Ia

CDG-Ib

CDG-Ic

CDG-Id

CDG-IIa

CDG-IIc

CDG-IId

CDG-IIe

Duchenne muscular dystrophy

FCMD

galactosaemia

Marfan syndrome

MDCIC

MDCID

MEB

ML-II

ML-III

progeriod variant of Ehlers–Danlos syndrome

type II congenital dyserythropoietic anaemia

WWS

FURTHER INFORMATION

Essentials of Glycobiology online textbook

CDG Family Network

Consortium for Functional Genomics

Human Disease Glycomics/Proteomics Initiative

SNPeffect database

Glossary

Hypomorphic allele

A mutation that causes a partial decrease in the activity of the gene product.

Heterosis

Describes situations in which individuals who are heterozygous for a specific pair of alleles have a fitness advantage over those who carry either homozygous genotype.

Isoelectric focusing

A method that is used to separate proteins within an electric field on the basis of their isoelectric points.

Electrospray ionization

An ionization technique that is used in the mass-spectrometric analysis of large biomolecules. Charged droplets of analyte solution are used to produce gas-phase ions for analysis.

Thrombocytopaenia

Decreased number of blood platelets.

Neutropaenia

A type of leukopaenia that mainly affects neutrophils.

Complex-type glycans

N-glycans that contain multiple GlcNAc-based branches, usually terminated with sialic acid or galactose.

Dysmorphology

A morphological defect that results from an abnormal developmental process.

Interferon

A pro-inflammatory cytokine that is produce by T cells in response to antigenic or mitogenic stimuli.

Reichert's membrane

The first basement membrane that is formed during mouse embryonic development; it is not present in humans.

Variable expressivity

The variability in severity of a disease-causing genetic trait.

Haploinsufficiency

The inability of the remaining wild-type allele to compensate for a heterozygous loss-of-function mutation.

Sialyl LewisX antigen

A branched O-linked glycan, Sia-Gal-GlcNAc, in which fucose is bound to GlcNAc. It functions as a ligand for selectin, which is important for leukocyte trafficking.

Leukopaenia

Reduction in the number of circulating leukocytes.

Protein-losing enteropathy

Increased enteric loss of serum protein, especially albumin, that causes hypoproteinaemia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeze, H. Genetic defects in the human glycome. Nat Rev Genet 7, 537–551 (2006). https://doi.org/10.1038/nrg1894

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing