Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulators: exploiting transcriptional and epigenetic mechanisms

Key Points

  • Insulators are DNA sequence elements that help to prevent inappropriate interactions between adjacent regions of the genome. There are two types of insulator — one that is involved in enhancer-blocking activity and other that provides a barrier to the spread of heterochromatin — each with distinct functions, protein components and mechanisms.

  • Enhancer-blocking insulators can prevent an enhancer from interacting with a promoter when placed between the two. This activity is position dependent; enhancer-blocking elements do not affect transcription from a flanking position.

  • Enhancer-blocking activity in Drosophila and in vertebrates correlates with the ability of the insulator involved to anchor the chromatin fibre to a fixed nuclear structure, which leads to the formation of looped domains within the nucleus. Proposed models link enhancer-blocking activity either to the topological constraints of looped chromatin domains or to some specialized property of the nucleoprotein complex at the anchoring sites.

  • Topology-based models hypothesize that some aspect of transcriptional activation is sensitive to nuclear architecture: it favours intra-loop interactions over inter-loop interactions. By placing an enhancer and promoter into separate loops, enhancer-blocking insulators reduce the chance of communication between the two.

  • Enhancer-blocking models that focus on the anchoring complex are linked to the idea that enhancers function by sending an activating signal towards the promoter that tracks along the DNA (for example, an advancing polymerase or helicase), with which the insulator structure interferes.

  • CTCF, a protein component of vertebrate enhancer-blocking insulators, has an important regulatory role at certain imprinted genes and elsewhere in the genome.

  • The phenomenon of enhancer-blocking insulation might reflect a more general role of proteins like CTCF in helping to organize large-scale chromatin interactions within the nucleus, in some cases perhaps to facilitate rather than inhibit gene expression.

  • Barrier insulators protect transgenes against chromatin-mediated silencing.

  • Barrier insulators work by altering the local balance of chromatin components in a way that favours the formation of 'active' euchromatin and/or prevents the spread of 'silenced' heterochromatic structures. Barriers achieve this by increasing the local concentration of factors that promote euchromatin formation either by direct recruitment or by tethering the insulator site to a subnuclear compartment that is rich in these factors.

  • Transition between euchromatin and heterochromatin is sharp only when a stably heterochromatic region is juxtaposed to a sequence element that can maintain itself in a euchromatic state (a barrier insulator). In all other cases the transition seems gradual at the population level as it happens at different positions in individual cells depending on the cell-specific local balance of chromatin components.

  • Barrier insulators seem to be specialized variants of other transcriptional regulatory elements such as enhancers and locus-control regions, and are based on similar principles of action and protein components.

Abstract

Insulators are DNA sequence elements that prevent inappropriate interactions between adjacent chromatin domains. One type of insulator establishes domains that separate enhancers and promoters to block their interaction, whereas a second type creates a barrier against the spread of heterochromatin. Recent studies have provided important advances in our understanding of the modes of action of both types of insulator. These new insights also suggest that the mechanisms of action of both enhancer blockers and barriers might not be unique to these types of element, but instead are adaptations of other gene-regulatory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Testing for enhancer-blocking insulator function.
Figure 2: Insulator-body formation and enhancer blocking are closely correlated in Drosophila melanogaster.
Figure 3: The chicken β-globin locus.
Figure 4: Models for enhancer-blocking activity.
Figure 5: Problems for simple models of enhancer blocking.
Figure 6: Testing for barrier function.
Figure 7: A local balance of activities determines the extent of heterochromatin propagation.
Figure 8: Unblocked spread of heterochromatin leads to position-effect variegation.

Similar content being viewed by others

References

  1. Bownes, M. Preferential insertion of P elements into genes expressed in the germ-line of Drosophila melanogaster. Mol. Gen. Genet. 222, 457–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Sun, F. L. & Elgin, S. C. Putting boundaries on silence. Cell 99, 459–462 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Geyer, P. K., Spana, C. & Corces, V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 5, 2657–2662 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pai, C. Y., Lei, E. P., Ghosh, D. & Corces, V. G. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol. Cell 16, 737–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Capelson, M. & Corces, V. G. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol. Cell 20, 105–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Gerasimova, T. I. & Corces, V. G. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92, 511–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gerasimova, T. I., Byrd, K. & Corces, V. G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000). This article provides the first clear demonstration that an insertion of the Su(Hw)– gypsy enhancer-blocking element targets the chromatin fibre to insulator bodies.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, Q., Li, M., Adams, J. & Cai, H. N. Nuclear location of a chromatin insulator in Drosophila melanogaster. J. Cell Sci. 117, 1025–1032 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Capelson, M. & Corces, V. G. SUMO conjugation attenuates the activity of the gypsy chromatin insulator. EMBO J. 25, 1906–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Kellum, R. & Schedl, P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell. Biol. 12, 2424–2431 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaszner, M., Vazquez, J. & Schedl, P. The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer–promoter interaction. Genes Dev. 13, 2098–2107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, K., Hart, C. M. & Laemmli, U. K. Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81, 879–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hart, C. M., Zhao, K. & Laemmli, U. K. The scs′ boundary element: characterization of boundary element-associated factors. Mol. Cell. Biol. 17, 999–1009 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blanton, J., Gaszner, M. & Schedl, P. Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev. 17, 664–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Pikaart, M. J., Recillas-Targa, F. & Felsenfeld, G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852–2862 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung, J. H., Bell, A. C. & Felsenfeld, G. Characterization of the chicken β-globin insulator. Proc. Natl Acad. Sci. USA 94, 575–580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000). References 20–22 shows that the imprinted expression of the Igf2/H19 locus is controlled by DNA-methylation-regulated binding of the CTCF enhancer-blocking protein.

    Article  CAS  PubMed  Google Scholar 

  21. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kanduri, C. et al. The 5′ flank of mouse H19 in an unusual chromatin conformation unidirectionally blocks enhancer–promoter communication. Curr. Biol. 10, 449–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Farrell, C. M., West, A. G. & Felsenfeld, G. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol. Cell. Biol. 22, 3820–3831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nature Genet. 28, 335–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S. & Lee, J. T. CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295, 345–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Magdinier, F., Yusufzai, T. M. & Felsenfeld, G. Both CTCF-dependent and -independent insulators are found between the mouse T cell receptor α and Dad1 genes. J. Biol. Chem. 279, 25381–25389 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004). The most comprehensive attempt at understanding the molecular mechanism of CTCF-mediated enhancer blocking. It concludes that models that are based on chromatin loop formation, which were originally developed on the basis of studies of Su(Hw) in Drosophila , might provide an explanation.

    Article  CAS  PubMed  Google Scholar 

  28. Courey, A. J., Plon, S. E. & Wang, J. C. The use of psoralen-modified DNA to probe the mechanism of enhancer action. Cell 45, 567–574 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Plon, S. E. & Wang, J. C. Transcription of the human β-globin gene is stimulated by an SV40 enhancer to which it is physically linked but topologically uncoupled. Cell 45, 575–580 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Bondarenko, V., Ninfa, A. & Studitsky, V. M. DNA supercoiling allows enhancer action over a large distance. Proc. Natl Acad. Sci. USA 98, 14883–14888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bondarenko, V. A., Jiang, Y. I. & Studitsky, V. M. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J. 22, 4728–4737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ameres, S. L. et al. Inducible DNA-loop formation blocks transcriptional activation by an SV40 enhancer. EMBO J. 24, 358–367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patrinos, G. P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006). This article demonstrates that CTCF protein is necessary to maintain interchromosomal interactions between Igf2/H19 and Wsb1/Nf1.

    Article  CAS  PubMed  Google Scholar 

  38. West, A. G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 14, R101–R111 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong, S., Bohl, D., Li, C. & Tuan, D. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol. Cell. Biol. 17, 3955–3965 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Morcillo, P., Rosen, C. & Dorsett, D. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics 144, 1143–1154 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morcillo, P., Rosen, C., Baylies, M. K. & Dorsett, D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 11, 2729–2740 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, H. & Dean, A. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res. 32, 4903–4919 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scott, K. C., Taubman, A. D. & Geyer, P. K. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics 153, 787–798 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai, H. N. & Shen, P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291, 493–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Muravyova, E. et al. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291, 495–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kuhn, E. J., Viering, M. M., Rhodes, K. M. & Geyer, P. K. A test of insulator interactions in Drosophila. EMBO J. 22, 2463–2471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savitskaya, E. et al. Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer–promoter communication in Drosophila melanogaster. Mol. Cell. Biol. 26, 754–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, W. et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nature Genet. 36, 1105–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kuzmin, I. et al. Transcriptional regulator CTCF controls human interleukin 1 receptor-associated kinase 2 promoter. J. Mol. Biol. 346, 411–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16, 2802–2813 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grewal, S. I. & Rice, J. C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol. 16, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Rusche, L. N., Kirchmaier, A. L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bi, X. & Broach, J. R. UASrpg can function as a heterochromatin boundary element in yeast. Genes Dev. 13, 1089–1101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oki, M., Valenzuela, L., Chiba, T., Ito, T. & Kamakaka, R. T. Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol. Cell. Biol. 24, 1956–1967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bi, X., Yu, Q., Sandmeier, J. J. & Zou, Y. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol. Cell. Biol. 24, 2118–2131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Recillas-Targa, F. et al. Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc. Natl Acad. Sci. USA 99, 6883–6888 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M. N. & Felsenfeld, G. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. West, A. G., Huang, S., Gaszner, M., Litt, M. D. & Felsenfeld, G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell 16, 453–463 (2004). This article demonstrates that direct recruitment of histone acetylases and H3K4-specific histone methyltransferases is a necessary but not sufficient component of the cHS4 vertebrate barrier element.

    Article  CAS  PubMed  Google Scholar 

  65. Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Ishii, K. & Laemmli, U. K. Structural and dynamic functions establish chromatin domains. Mol. Cell 11, 237–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Roseman, R. R., Pirrotta, V. & Geyer, P. K. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 12, 435–442 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ciavatta, D., Kalantry, S., Magnuson, T. & Smithies, O. A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc. Natl Acad. Sci. USA 103, 9958–9963 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Filippova, G. N. et al. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell 8, 31–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Cho, D. H. et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20, 483–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genet. 28, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oki, M. & Kamakaka, R. T. Barrier function at HMR. Mol. Cell 19, 707–716 (2005). This paper describes the genetic dissection of the barrier element at the centromere-distal end of HMR in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  76. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr. Biol. 16, 119–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Willoughby, D. A., Vilalta, A. & Oshima, R. G. An Alu element from the K18 gene confers position-independent expression in transgenic mice. J. Biol. Chem. 275, 759–768 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006). This paper provides an example of barrier activity achieved by targeting the chromatin fibre to a subnuclear compartment that is unfavourable for heterochromatin formation.

    Article  CAS  PubMed  Google Scholar 

  81. Wallrath, L. L. & Elgin, S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9, 1263–1277 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, F. L. et al. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc. Natl Acad. Sci. USA 97, 5340–5345 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, F. L. et al. cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol. 24, 8210–8220 (2004). This paper focuses on the chromatin organization of the fourth chromosome in Drosophila and describes situations in which transition between heterochromatin and euchromatin is not regulated by barrier elements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kimura, A. & Horikoshi, M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 9, 499–508 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Felsenfeld laboratory for their advice and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Felsenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Enhancer

A cis-acting regulatory sequence that markedly increases expression of a neighbouring gene. Enhancers are typically capable of operating over considerable distances (sometimes 50 kb) upstream or downstream of the gene, and in either orientation.

Silencer

A cis-acting regulatory sequence that decreases expression of a neighbouring gene.

Upstream activating sequence

A cis-acting regulatory sequence in yeast that is distinct from the promoter and increases expression of a neighbouring gene.

Enhancer-blocking insulator

A cis-acting regulatory sequence that blocks the action of an enhancer on a promoter when placed between the two, but not otherwise.

Barrier insulator

A cis-acting regulatory sequence that prevents the extension of a heterochromatic region into a euchromatic region when placed at the junction between the two.

Imprinted loci

Genes that are expressed from only one of the two parental copies, the choice being dependent on the sex of the parent from which the copy was derived.

Nucleosome

The basic structural subunit of chromatin, which consists of roughly 200 base pairs of DNA and an octamer of histone proteins.

Nuclease-hypersensitive site

Chromosomal region that is highly accessible to cleavage by deoxyribonuclease I. Such sites are associated with open chromatin conformations and transcriptional activity.

Nuclear pore complex

A large multiprotein complex that forms a channel in the nuclear envelope of eukaryotic cells. It joins the inner and outer nuclear membranes and allows transport of proteins and nucleic acids to and from the nucleus.

Locus-control region

(LCR). Originally defined as a cis-acting sequence element that confers tissue-specific, copy-number-dependent expression on a transgene. Molecular dissection of some LCRs showed them to be composite structures that are comprised of transcriptional activators and insulator elements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaszner, M., Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7, 703–713 (2006). https://doi.org/10.1038/nrg1925

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing