Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA polymerases and human disease

Key Points

  • DNA polymerases carry out crucial functions in many DNA metabolic processes.

  • Polymerases catalyse the addition, using a template, of complementary nucleotides to the 3′ end of DNA primer strands. Many DNA polymerases also have an additional intrinsic proofreading exonuclease activity.

  • The high accuracy or fidelity of semi-conservative DNA replication is the product of nucleotide template interaction, polymerase-enhanced base selectivity, exonuclease proofreading and the post-replication mismatch repair of misincorporated nucleotides.

  • Cells contain at least 13 documented DNA polymerases that might have different functions.

  • The five earliest-identified DNA polymerases (α, β, δ, ε and γ) are essential proteins that have key roles in nuclear DNA- or mitochondrial DNA-mediated transactions.

  • Recently identified 'specialized' or translesion synthesis (TLS) polymerases supplement the activities of the five 'canonical' polymerases to replicate or facilitate the repair of damaged DNA.

  • Polymerase expression and activity are highly regulated in cells during development by genetic and epigenetic mechanisms.

  • There are few human diseases that have been linked to mutations or defects in DNA polymerases. Mutations in the polymerase that replicates mitochondrial DNA, Pol γ, lead to a range of human neuromuscular and ophthalmologic diseases. Loss of function of the TLS polymerase Pol η leads to xeroderma pigmentosum-variant, a DNA repair and cancer predisposition syndrome.

  • Heritable or acquired variation in DNA polymerases might be important in human disease, especially in age-associated proliferative diseases such as cancer.

  • DNA polymerases are under-exploited therapeutic targets for the treatment of infectious disease and acquired human diseases involving cell proliferation — most notably cancer.

Abstract

The human genome encodes at least 14 DNA-dependent DNA polymerases — a surprisingly large number. These include the more abundant, high-fidelity enzymes that replicate the bulk of genomic DNA, together with eight or more specialized DNA polymerases that have been discovered in the past decade. Although the roles of the newly recognized polymerases are still being defined, one of their crucial functions is to allow synthesis past DNA damage that blocks replication-fork progression. We explore the reasons that might justify the need for so many DNA polymerases, describe their function and mode of regulation, and finally consider links between mutations in DNA polymerases and human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical DNA polymerases and associated subunits.
Figure 2: DNA polymerase catalysis and structure.
Figure 3: Fidelity of DNA replication.
Figure 4: DNA polymerase expression and activity in cycling cells and whole organisms.

Similar content being viewed by others

References

  1. Friedberg, E. C. et al. DNA Repair and Mutagenesis (American Society for Microbiology, Washington DC, 2005).

    Google Scholar 

  2. Conaway, R. C. & Lehman, I. R. Synthesis by the DNA primase of Drosophila melanogaster of a primer with a unique chain length. Proc. Natl Acad. Sci. USA 79, 4585–4588 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loeb, L. A. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J. Biol. Chem. 244, 1672–1681 (1969). This paper and reference 4 are the initial papers that describe the purification of nuclear DNA polymerases. Sea urchin nuclear DNA polymerase and low molecular weight calf thymus DNA are now classified, respectively, as Pol α and Pol β.

    CAS  PubMed  Google Scholar 

  4. Chang, L. M. & Bollum, F. J. Low molecular weight deoxyribonucleic acid polymerase in mammalian cells. J. Biol. Chem. 246, 5835–5837 (1971).

    CAS  PubMed  Google Scholar 

  5. Sobol, R. W. et al. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379, 183–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Weissbach, A., Schlabach, A., Fridlender, B. & Bolden, A. DNA polymerases from human cells. Nature New Biol. 231, 167–170 (1971). This paper and reference 7 demonstrate the presence of an exonuclease activity associated with human DNA polymerases.

    Article  CAS  PubMed  Google Scholar 

  7. Byrnes, J. J., Downey, K. M., Black, V. L. & So, A. G. A new mammalian DNA polymerase with 3′ to 5′ exonuclease activity: DNA polymerase delta. Biochemistry 15, 2817–2823 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Shcherbakova, P. V. & Pavlov, Y. I. 3′->5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142, 717–726 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Syvaoja, J. et al. DNA polymerases alpha, delta and epsilon: three distinct enzymes from HeLa cells. Proc. Natl Acad. Sci. USA 87, 6664–6668 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shcherbakova, P. V. et al. Unique error signature of the four-subunit yeast DNA polymerase epsilon. J. Biol. Chem. 278, 43770–43780 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E. & Kunkel, T. A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Spivak, G. & Hanawalt, P. C. Translesion DNA synthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells. Biochemistry 31, 6794–6800 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Friedberg, E. C. et al. DNA repair: from molecular mechanism to human disease. DNA Repair (Amst.) 5, 986–996 (2006).

    Article  CAS  Google Scholar 

  15. Beard, W. A. & Wilson, S. H. Structure and mechanism of DNA polymerase beta. Chem. Rev. 106, 361–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Garg, P. & Burgers, P. M. J. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Molec. Biol. 40, 115–128 (2005).

    Article  CAS  Google Scholar 

  17. Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Pavlov, Y. I., Shcherbakova, P. V. & Rogozin, I. B. Roles of DNA polymerases in replication, repair and recombination in eukaryotes. Internat. Rev. Cytology 255, 41–132 (2006).

    Article  CAS  Google Scholar 

  19. Sweasy, J. B., Lauper, J. M. & Eckert, K. A. DNA polymerases and human diseases. Radiat. Res. 166, 693–714 (2006). This paper and reference 20 summarize current knowledge on translesional DNA polymerases and their possible associations with human diseases.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann, A. R. et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst.) 6, 891–899 (2007).

    Article  CAS  Google Scholar 

  21. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991). These authors present the concept of a mutator phenotype in cancer, which was initially focused on misincorporation by DNA polymerases.

    CAS  PubMed  Google Scholar 

  22. Ferrin, L. J., Beckman, R. A., Loeb, L. A. & Mildvan, A. S. in Manganese in Metabolism and Enzyme Function (eds Schramm, V. L. & Wedler, F. C.) 259–273 (Academic, New York, 1986).

    Book  Google Scholar 

  23. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant change. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  24. Kozlov, I. A., Pitsch, S. & Orgel, L. E. Oligomerization of activated D- and L-guanosine mononucleotides on templates containing D- and L-deoxycytidylate residues. Proc. Natl Acad. Sci. USA 95, 13448–13452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joyce, C. M. & Benkovic, S. J. DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry 43, 14317–14324 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Franklin, M. C., Wang, J. & Steitz, T. A. Sructure of the replicating complex of a Pol alpha family DNA polymerase. Cell 105, 657–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Petruska, J., Sowers, L. C. & Goodman, M. F. Comparison of nucleotide interactions in water, proteins and vacuum: model for DNA polymerase fidelity. Proc. Natl Acad. Sci. USA 83, 1559–1562 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sintim, H. O. & Kool, E. T. Remarkable sensitivity to DNA base shape in the DNA polymerase active site. Angew. Chem. Int. Ed. Engl. 45, 1974–1979 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Loeb, L. A., Agarwal, S. S. & Woodside, A. M. Induction of DNA polymerase in human lymphocytes by photohemaglutinin. Proc. Natl Acad. Sci. USA 61, 827–834 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fien, K. et al. Primer utilization by DNA polymerase alpha-primase is influenced by its interaction with Mcm10p. J. Biol. Chem. 279, 16144–16153 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Floy, K. M., Hess, R. O. & Meisner, L. F. DNA polymerase alpha defect in the N syndrome. Am. J. Med. Genet. 35, 301–305 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Jessberger, R., Podust, V., Hubscher, U. & Berg, P. A mammalian protein complex that repairs double-strand breaks and deletions by recombination. J. Biol. Chem. 268, 15070–15079 (1993).

    CAS  PubMed  Google Scholar 

  33. Longley, M. J., Pierce, A. J. & Modrich, P. DNA polymerase delta is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917–10921 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Maloisel, L., Fabre, F. & Gangloff, S. DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol. Cell Biol. 28, 1373–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Perrino, F. W., Harvey, S., McMillin, S. & Hollis, T. The human TREX2 3′ ->5′-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. J. Biol. Chem. 280, 15212–15218 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, X., Guo, D., Yuan, F. & Wang, Z. Accessibility of DNA polymerases to repair synthesis during nucleotide excision repair in yeast cell-free extracts. Nucleic Acids Res. 29, 3123–3130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flohr, T. et al. Detection of mutations in the DNA polymerase delta gene of human sporadic colorectal cancers and colon cancer cell lines. Int. J. Cancer 80, 919–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Goldsby, R. E. et al. Defective DNA polymerase-delta proofreading causes cancer susceptibility in mice. Nature Med. 7, 638–639 (2001). This paper and reference 39 demonstrate that mutations in DNA polymerases, in either the exonuclease or polymerase sites, can increase mutagenesis and accelerate carcinogenesis in mice.

    Article  CAS  PubMed  Google Scholar 

  39. Venkatesan, R. N. et al. Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates carcinogenesis. Mol. Cell Biol. 27, 7669–7682 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Podust, V. N., Chang, L.-S., Ott, R., Dianov, G. L. & Fanning, E. Reconstitution of human DNA polymerase delta using recombinant baculoviruses. J. Biol. Chem. 277, 3894–3901 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Masuda, Y. et al. Dynamics of human replication factors in the elongation phase of DNA replication. Nucleic Acids Res. 35, 6904–6916 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolden, A., Fry, M., Muller, R., Citarella, R. & Weissbach, A. The presence of a polyriboadenylic acid-dependent DNA polymerase in eukaryotic cells. Arch. Biochem. Biophys. 153, 26–33 (1972).

    Article  CAS  PubMed  Google Scholar 

  43. Hansen, A. B. et al. Mitochondrial DNA integrity is not dependent on DNA polymerase-beta activity. DNA Repair 5, 71–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hance, N., Ekstrand, M. I. & Trifunovic, A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14, 1775–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nature Genet. 39, 540–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Vermulst, M. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nature Genet. 40, 392–394 (2008). This paper and reference 47 present conceptual arguments and experimental data indicating that mitochondrial mutations might be involved in age-associated human diseases.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace, D. C. A mitochondrial paradigm for metabolic and degenerative diseases, aging and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Longley, M. J., Graziewicz, M. A., Bienstock, R. J. & Copeland, W. C. Consequences of mutations in human DNA polymerase gamma. Gene 354, 125–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genet. 38, 518–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Chatterjee, A., Mambo, E. & Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663–4674 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Cabelof, D. C. et al. Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. Cancer Res. 66, 7460–7465 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Starcevic, D., Dalal, S. & Sweasy, J. B. Is there a link between DNA polymerase beta and cancer? Cell Cycle 3, 998–1001 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Sweasy, J. B. et al. Expression of DNA polymerase beta mutants in mouse cells results in cellular transformation. Proc. Natl Acad. Sci. USA 102, 14350–14355 (2005). References 53–55 present experimental evidence of the associations between alterations in Pol β and cancers in animals and humans.

    Google Scholar 

  54. Srivastava, D. K., Husain, I., Arteaga, C. L. & Wilson, S. H. DNA polymerase beta expression differences in selected human tumors and cell lines. Carcinogenesis 20, 1049–1054 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Canitrot, Y. et al. Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc. Natl Acad. Sci. USA 95, 12586–12590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wood, R. D., Robins, P. & Lindahl, T. Complementation of the xeroderma pigmentosum DNA repair defect in cell free extracts. Cell 53, 97–106 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Wells, R. D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32, 271–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Maizels, N. Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    Article  CAS  PubMed  Google Scholar 

  60. Johnson, S. J. & Beese, L. S. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116, 803–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999). This is the first demonstration and characterization of a human translesional DNA polymerase that is also disease associated.

    Article  CAS  PubMed  Google Scholar 

  62. McCulloch, S. D. et al. Preferential cis–syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428, 97–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Ohkumo, T., Masutani, C., Eki, T. & Hanaoka, F. Deficiency of the Caenorhabditis elegans DNA polymerase eta homologue increases sensitivity to UV radiation during germ-line development. Cell Struct. Funct. 31, 29–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Beard, W. A. & Wilson, S. H. Structural insights into the origins of DNA polymerase fidelity. Structure 11, 489–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hile, S. E. & Eckert, K. A. DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences. Nucleic Acids Res. 36, 688–696 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Limoli, C. L., Giedzinski, E., Bonner, W. M. & Cleaver, J. E. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma-H2AX formation, and Mre11 relocalization. Proc. Natl Acad. Sci. USA 99, 233–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Ogi, T., Shinkai, Y., Tanaka, K. & Ohmori, H. Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc. Natl Acad. Sci. USA 99, 15548–15553 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O-Wang, J. et al. DNA polymerase kappa, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res. 61, 5366–5369 (2001).

    CAS  PubMed  Google Scholar 

  70. Bebenek, K. et al. 5′-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science 291, 2156–2159 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Frouin, I., Toueille, M., Ferrari, E., Shevelev, I. & Hubscher, U. Phosphorylation of human DNA polymerase lambda by the cyclin-dependent kinase Cdk2/cyclin A complex is modulated by its association with proliferating cell nuclear antigen. Nucleic Acids Res. 33, 5354–5361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahajan, K. N., Nick McElhinny, S. A., Mitchell, B. S. & Ramsden, D. A. Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol. Cell Biol. 22, 5194–5202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wittschieben, J. P., Reshmi, S. C., Gollin, S. M. & Wood, R. D. Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res. 66, 134–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Seki, M. et al. High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J. 23, 4484–4494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Harper, J. W. & Elledge, S. J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Pastinen, T., Ge, B. & Hudson, T. J. Influence of human genome polymorphism on gene expression. Hum. Mol. Genet. 15, R9–R16 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Maheshri, N. & O'Shea, E. K. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, T. S. et al. Assignment of the gene for human DNA polymerase alpha to the X chromosome. Proc. Natl Acad. Sci. USA 82, 5270–5274 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nguyen, D. K. & Disteche, C. M. Dosage compensation of the active X chromosome in mammals. Nature Genet. 38, 47–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, H. K., Lee, Y. S., Sivaprasad, U., Malhotra, A. & Dutta, A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677–687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barth, S. et al. Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, W., Dahlberg, J. E. & Tam, W. MicroRNAs in tumorigenesis: a primer. Am. J. Pathol. 171, 728–738 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Negrini, M., Ferracin, M., Sabbioni, S. & Croce, C. M. MicroRNAs in human cancer: from research to therapy. J. Cell Sci. 120, 1833–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Cervantes, R. B., Stringer, J. R., Shao, C., Tischfield, J. A. & Stambrook, P. J. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl Acad. Sci. USA 99, 3586–3590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Kenyon, J. & Gerson, S. L. The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res. 35, 7557–7565 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pera, M. F. Stem cells. A new year and a new era. Nature 451, 135–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Pomerantz, R. T. & O'Donnell, M. Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol. 15, 156–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Chiu, R. K. et al. Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet. 2, e116 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Malkas, L. H. et al. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc. Natl Acad. Sci. USA 103, 19472–19477 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Copeland, W. C. Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59, 131–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16, R50–R59 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salipante, S. J. & Horwitz, M. S. Phylogenetic fate mapping. Proc. Natl Acad. Sci. USA 103, 5448–5453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cristofoli, W. A. et al. 5-alkynyl analogs of arabinouridine and 2′-deoxyuridine: cytostatic activity against herpes simplex virus and varicella-zoster thymidine kinase gene-transfected cells. J. Med. Chem. 50, 2851–2857 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Argyris, E. G. et al. Inhibition of endogenous reverse transcription of human and nonhuman primate lentiviruses: potential for development of lentivirucides. Virology 353, 482–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Bielas, J. H., Loeb, K. R., Rubin, B. P., True, L. D. & Loeb, L. A. Human cancers express a mutator phenotype. Proc. Natl Acad. Sci. USA 103, 18238–18242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl Acad. Sci. USA 96, 1492–1497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kornberg, A. & Baker, T. DNA Replication (W. H. Freeman and Co., New York, 1992). This book and reference 108 summarize early research on DNA polymerases.

    Google Scholar 

  106. Weymouth, L. A. & Loeb, L. A. Mutagenesis during in vitro DNA synthesis. Proc. Natl Acad. Sci. USA 75, 1924–1928 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488–492 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fry, M. & Loeb, L. A. Animal Cell DNA Polymerases (CRC, Boca Raton, Florida, 1986).

    Google Scholar 

  109. Tuusa, J., Uitto, L. & Syvaoja, J. E. Human DNA polymerase epsilon is expressed during cell proliferation in a manner characteristic of replicative DNA polymerases. Nucleic Acids Res. 23, 2178–2183 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burgers, P. M. et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276, 43487–43490 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Arana, M. E. et al. A unique error signature for human DNA polymerase nu. DNA Repair (Amst.) 6, 213–223 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Blank, J. Sidorova and A.S. Mildvan for comments. Research in the laboratories of the authors are supported by National Institutes of Health Grants: CA 77852 to R.M. & L.A.L., CA 102029 and CA 115802 to L.A.L., and CA 13383 to R.M.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The Monnat laboratory homepage

Lawrence Loeb's homepage

miRNABase Targets database

Catalogue of Somatic Mutations in Cancer (COSMIC) database

Segmental Duplication Database

NCBI Cancer Chromosomes database

NCBI SNP database (dbSNP)

NCI Cancer Genome Anatomy Project

UK Sanger Institute Cancer Genome Project

USCS Genome Browser

Glossary

Lagging strand

One of the two DNA strands that is synthesized during DNA replication. The lagging strand is synthesized by Pol δ in short segments that are known as Okasaki fragments.

Leading strand

One of the two DNA strands that is synthesized during DNA replication. The leading strand is believed to be synthesized by Pol ε, predominantly in a single segment.

Non-processive

Processivity refers to the number of nucleotide additions per binding event between DNA polymerase and a DNA template. Non-processive DNA polymerases incorporate one or a few base pairs per DNA-binding event. Processive DNA polymerases incorporate thousands of nucleotides per DNA-binding event.

Holoenzyme

The catalytically active form of DNA polymerases, including all tightly bound associated subunits.

Homoplasmic

The presence of identical copies of mitochondrial DNA in a cell or tissue.

Haploinsufficient

Describes the situation in which half the amount of the normal gene product confers a detectable phenotype.

Nucleotide adduct

A covalent modification of a nucleotide base in DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeb, L., Monnat, R. DNA polymerases and human disease. Nat Rev Genet 9, 594–604 (2008). https://doi.org/10.1038/nrg2345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing