Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity

Key Points

  • Chemosensory receptors recognize chemical signals of odorants and tastants in the environment. Six multigene families are known to encode chemosensory receptors in vertebrates and two multigene families in insects, respectively.

  • Near-complete repertoires of chemosensory receptor genes have been determined from the genomic sequences of various organisms. These studies have shown that the number of chemosensory receptor genes is generally large and varies greatly among different organisms.

  • A substantial portion of interspecific variation in gene number can be explained by adaptation to different environments. There was a large increase in the number of olfactory receptor genes when fishes evolved into land animals that needed to detect airborne odorants, but this number decreased drastically when mammals adapted to aquatic life.

  • Vertebrate species have many chemosensory receptor pseudogenes as well as functional genes. There is no clear relationship between the number of pseudogenes and environmental changes.

  • Genomic drift, a random process of gene duplication and deletion, has generated a large amount of gene copy-number variation among individuals of the same species. The number of odorant receptor genes and pseudogenes both followed a normal distribution in human populations.

  • The similarity in the distribution of functional genes to the distribution of pseudogenes suggests that the copy-number variation of functional genes is almost neutral.

  • The number of chemosensory receptor genes is generally much smaller in insects than in vertebrates. The proportion of pseudogenes is also smaller in insects.

Abstract

Chemosensory receptors are essential for the survival of organisms that range from bacteria to mammals. Recent studies have shown that the numbers of functional chemosensory receptor genes and pseudogenes vary enormously among the genomes of different animal species. Although much of the variation can be explained by the adaptation of organisms to different environments, it has become clear that a substantial portion is generated by genomic drift, a random process of gene duplication and deletion. Genomic drift also generates a substantial amount of copy-number variation in chemosensory receptor genes within species. It seems that mutation by gene duplication and inactivation has important roles in both the adaptive and non-adaptive evolution of chemosensation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemosensory receptors and their genes.
Figure 2: Numbers of chemosensory receptor genes in vertebrates and insects.
Figure 3: Distribution of chemosensory receptor genes in the human genome.
Figure 4: Evolutionary dynamics of olfactory receptor genes.
Figure 5: Copy-number variation and genomic drift.

Similar content being viewed by others

References

  1. Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zozulya, S., Echeverri, F. & Nguyen, T. The human olfactory receptor repertoire. Genome Biol. 2, 0018.1–0018.12 (2001). In References 1 and 2, a bioinformatics approach was used for the first time to identify all of the OR genes in the human genome.

    Article  Google Scholar 

  3. Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nature Neurosci. 5, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Young, J. M. et al. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 11, 535–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D. & Paabo, S. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol. 2, e5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl Acad. Sci. USA 102, 6039–6044 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liman, E. R. Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Arch. 453, 125–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nozawa, M., Kawahara, Y. & Nei, M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc. Natl Acad. Sci. USA 104, 20421–20426 (2007). This study empirically showed that genomic drift is an important mechanism in the evolution of chemosensory receptor genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991). This is a seminal paper that identified OR genes for the first time and estimated that there are approximately 1,000 OR genes in the mammalian genome.

    Article  CAS  PubMed  Google Scholar 

  10. Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Feldmesser, E. et al. Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7, 121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borowsky, B. et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl Acad. Sci. USA 98, 8966–8971 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zucchi, R., Chiellini, G., Scanlan, T. S. & Grandy, D. K. Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 149, 967–978 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Rev. Neurosci. 4, 551–562 (2003).

    Article  CAS  Google Scholar 

  21. Brennan, P. A. & Zufall, F. Pheromonal communication in vertebrates. Nature 444, 308–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Baxi, K. N., Dorries, K. M. & Eisthen, H. L. Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci. 29, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ikeda, K. New seasonings. Chem. Senses 27, 847–849 (2002). This is an English translation of Ikeda's original paper in Japanese from 1909 on the discovery of the umami taste.

    Article  PubMed  Google Scholar 

  24. Chandrashekar, J., Hoon, M. A., Ryba, N. J. & Zuker, C. S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bachmanov, A. A. & Beauchamp, G. K. Taste receptor genes. Annu. Rev. Nutr. 27, 389–414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, Q. & Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 14537–14542 (2003). This is the first comprehensive study about the evolution of the chemosensory receptor gene superfamily in Drosophila spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones, W. D., Cayirlioglu, P., Kadow, I. G. & Vosshall, L. B. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Bray, S. & Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019–1029 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Godfrey, P. A., Malnic, B. & Buck, L. B. The mouse olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2156–2161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2584–2589 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niimura, Y. & Nei, M. Evolution of olfactory receptor genes in the human genome. Proc. Natl Acad. Sci. USA 100, 12235–12240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berghard, A. & Dryer, L. A novel family of ancient vertebrate odorant receptors. J. Neurobiol. 37, 383–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Freitag, J., Beck, A., Ludwig, G., von Buchholtz, L. & Breer, H. On the origin of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis). Gene 226, 165–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Niimura, Y. & Nei, M. Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene 346, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).

    Google Scholar 

  44. Go, Y. & Niimura, Y. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol. Biol. Evol. 25, 1897–1907 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Bowmaker, J. K. in Evolution of the Eye and Visual System (eds Cronly-Dillon, J. R. & Gregory, R. L.) 63–81 (CRC, Boca Raton, 1991).

    Google Scholar 

  47. Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proc. Biol. Sci. 275, 2309–2317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laska, M., Seibt, A. & Weber, A. 'Microsmatic' primates revisited: olfactory sensitivity in the squirrel monkey. Chem. Senses 25, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Shephard, G. M. The human sense of smell: are we better than we think? PLoS Biol. 2, 572–575 (2004).

    Google Scholar 

  50. Niimura, Y. & Nei, M. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE 2, e708 (2007). This paper showed that large numbers of gene gains and losses occur during the evolution of mammalian OR genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pettigrew, J. D. Electroreception in monotremes. J. Exp. Biol. 202, 1447–1454 (1999).

    CAS  PubMed  Google Scholar 

  52. Oelschlager, H. H. & Kemp, B. Ontogenesis of the sperm whale brain. J. Comp. Neurol. 399, 210–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Freitag, J., Ludwig, G., Andreini, I., Rossler, P. & Breer, H. Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 183, 635–650 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Kishida, T., Kubota, S., Shirayama, Y. & Fukami, H. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol. Lett. 3, 428–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGowen, M. R., Clark, C. & Gatesy, J. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst. Biol. 57, 574–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Li, W. H., Gojobori, T. & Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 292, 237–239 (1981).

    Article  CAS  PubMed  Google Scholar 

  57. Gilad, Y., Bustamante, C. D., Lancet, D. & Paabo, S. Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am. J. Hum. Genet. 73, 489–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, X. et al. Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol. 8, R86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balakirev, E. S. & Ayala, F. J. Pseudogenes: are they “junk” or functional DNA? Annu. Rev. Genet. 37, 123–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Duret, L., Chureau, C., Samain, S., Weissenbach, J. & Avner, P. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312, 1653–1655 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Zheng, D. & Gerstein, M. B. The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends Genet. 23, 219–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Lai, P. C. et al. An olfactory receptor pseudogene whose function emerged in humans. Nature Precedings 2 Nov 2007 (doi:10.1038/npre.2007.1290.1).

  63. Grus, W. E. & Zhang, J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol. Biol. Evol. 25, 1593–1601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gloriam, D. E. et al. The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol. Phylogenet. Evol. 35, 470–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hashiguchi, Y. & Nishida, M. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol. Biol. Evol. 24, 2099–2107 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Grus, W. E., Shi, P., Zhang, Y. P. & Zhang, J. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc. Natl Acad. Sci. USA 102, 5767–5772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young, J. M., Kambere, M., Trask, B. J. & Lane, R. P. Divergent V1R repertoires in five species: amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res. 15, 231–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grus, W. E., Shi, P. & Zhang, J. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol. Biol. Evol. 24, 2153–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Young, J. M. & Trask, B. J. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet. 23, 212–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Liman, E. R. & Innan, H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc. Natl Acad. Sci. USA 100, 3328–3332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, J. & Webb, D. M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc. Natl Acad. Sci. USA 100, 8337–8341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genet. 26, 18–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Shirokova, E., Raguse, J. D., Meyerhof, W. & Krautwurst, D. The human vomeronasal type-1 receptor family — detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J. 22, 1416–1425 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Shepherd, G. M. Smells, brains and hormones. Nature 439, 149–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Shi, P. & Zhang, J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res. 17, 166–174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonadonna, F., Miguel, E., Grosbois, V., Jouventin, P. & Bessiere, J. M. Individual odor recognition in birds: an endogenous olfactory signature on petrels' feathers? J. Chem. Ecol. 33, 1819–1829 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Shi, P. & Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol. Biol. Evol. 23, 292–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Li, X. et al. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar. PLoS Genet. 1, 27–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Hashiguchi, Y., Furuta, Y., Kawahara, R. & Nishida, M. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene 396, 170–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. McBride, C. S., & Arguello, J. R. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177, 1395–1416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Robertson, H. M. & Wanner, K. W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395–1403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Engsontia, P. et al. The red flour beetle's large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 387–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Abdel-Latief, M. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PLoS ONE 2, e1319 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nozawa, M. & Nei, M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc. Natl Acad. Sci. USA 104, 7122–7127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Serizawa, S. et al. Negative feedback regulation ensures the one receptor–one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Ray, A., van Naters, W. G., Shiraiwa, T. & Carlson, J. R. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53, 353–369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ray, A., van der Goes van Naters, W. & Carlson, J. R. A regulatory code for neuron-specific odor receptor expression. PLoS Biol. 6, e125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nei, M., Gu, X. & Sitnikova, T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl Acad. Sci. USA 94, 7799–7806 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nei, M. & Rooney, A. P. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39, 121–152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nam, J. & Nei, M. Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol. Biol. Evol. 22, 2386–2394 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Nei, M. The new mutation theory of phenotypic evolution. Proc. Natl Acad. Sci. USA 104, 12235–12242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006). This study showed that the extent of copy number variation in the human genome is approximately 12% and indicates that such variation may be more important than single nucleotide polymorphisms in the generation of genetic variation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nature Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cooper, G. M., Nickerson, D. A. & Eichler, E. E. Mutational and selective effects on copy-number variants in the human genome. Nature Genet. 39, S22–S29 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Nozawa, M. & Nei, M. Genomic drift and copy number variation of chemosensory receptor genes in humans and mice. Cytogenet. Genome Res. (in the press).

  100. Young, J. M. et al. Extensive copy-number variation of the human olfactory receptor gene family. Am. J. Hum. Genet. 83, 228–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kelley, J., Walter, L. & Trowsdale, J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet. 1, 129–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Fanciulli, M. et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nature Genet. 39, 721–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Nguyen, D. Q., Webber, C. & Ponting, C. P. Bias of selection on human copy-number variants. PLoS Genet. 2, e20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cutler, G., Marshall, L. A., Chin, N., Baribault, H. & Kassner, P. D. Significant gene content variation characterizes the genomes of inbred mouse strains. Genome Res. 17, 1743–1754 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Graubert, T. A. et al. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet. 3, e3 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kondo, R., Kaneko, S., Sun, H., Sakaizumi, M. & Chigusa, S. I. Diversification of olfactory receptor genes in the Japanese medaka fish, Oryzias latipes. Gene 282, 113–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Gimelbrant, A. A., Skaletsky, H. & Chess, A. Selective pressures on the olfactory receptor repertoire since the human–chimpanzee divergence. Proc. Natl Acad. Sci. USA 101, 9019–9022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Clark, A. G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302, 1960–1963 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Emes, R. D., Beatson, S. A., Ponting, C. P. & Goodstadt, L. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res. 14, 591–602 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shi, P., Bielawski, J. P., Yang, H. & Zhang, Y. P. Adaptive diversification of vomeronasal receptor 1 genes in rodents. J. Mol. Evol. 60, 566–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Tunstall, N. E., Sirey, T., Newcomb, R. D. & Warr, C. G. Selective pressures on Drosophila chemosensory receptor genes. J. Mol. Evol. 64, 628–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (eds Bryson, V. & Vegel, H. J.) 97–166 (Academic, New York, 1965).

    Book  Google Scholar 

  116. King, J. L. & Jukes, T. H. Non-Darwinian evolution. Science 164, 788–798 (1969).

    Article  CAS  PubMed  Google Scholar 

  117. Perutz, M. F. Species adaptation in a protein molecule. Mol. Biol. Evol. 1, 1–28 (1983).

    CAS  PubMed  Google Scholar 

  118. Yokoyama, S., Tada, T., Zhang, H. & Britt, L. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc. Natl Acad. Sci. USA 105, 13480–13485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suzuki, Y. & Nei, M. False-positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol. Biol. Evol. 21, 914–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Hughes, A. L. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99, 364–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Hughes, A. L. The origin of adaptive phenotypes. Proc. Natl Acad. Sci. USA 105, 13193–13194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Suzuki, Y. False-positive results obtained from the branch-site test of positive selection. Genes Genet. Syst. 83, 331–338 (2008).

    Article  PubMed  Google Scholar 

  123. Menashe, I. et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5, e284 (2007). This study showed that copy-number polymorphism of OR genes affects odorant sensitivity in different individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fisher, R. A., Ford, E. B. & Huxley, J. Taste-testing the anthropoid apes. Nature 144, 750 (1939).

    Article  Google Scholar 

  125. Wooding, S. et al. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440, 930–934 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Nei, M. Selectionism and neutralism in molecular evolution. Mol. Biol. Evol. 22, 2318–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Mayr, E. Animal Species and Evolution (Belknap Press of Harvard Univ., Massachusetts, 1963).

    Book  Google Scholar 

  130. Futuyma, D. J. Evolution (Sinauer Associates, Massachusetts, 2005).

    Google Scholar 

  131. Dobzhansky, T. Genetics and the Origin of Species. 3rd edn (Columbia Univ. Press, New York, 1951).

    Google Scholar 

  132. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

    Book  Google Scholar 

  133. Stoltzfus, A. Mutationism and the dual causation of evolutionary change. Evol. Dev. 8, 304–317 (2006).

    Article  PubMed  Google Scholar 

  134. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, Massachusetts, 2007).

    Google Scholar 

  135. Lindemann, L. et al. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85, 372–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C. & Ritchie, M. G. Drosophila chemoreceptor gene evolution: selection, specialization and genome size. Mol. Ecol. 17, 1648–1657 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Hill, C. A. et al. G protein-coupled receptors in Anopheles gambiae. Science 298, 176–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Kent, L. B., Walden, K. K. & Robertson, H. M. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem. Senses 33, 79–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Bohbot, J. et al. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16, 525–537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wanner, K. W. et al. Female-biased expression of odorant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol. 16, 107–119 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Go for providing unpublished data. This work was supported by National Institutes of Health grant GM020293 to M.N. and Japanese Government Grants 17710162 and 20770192 to Y.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Nei.

Related links

Related links

FURTHER INFORMATION

Masatoshi Nei's homepage

Yoshihito Niimura's homepage

Glossary

Chemosensation

The sense of smell and taste.

Multigene family

A group of genes that have descended from a common ancestor, and therefore have similar functions and similar DNA sequences.

Pheromone

A chemical substance that is released and detected by different individuals of the same species, and triggers physiological and behavioural responses.

Main olfactory epithelium

A specialized epithelial tissue in the nasal cavity in which olfactory receptor genes are expressed.

Ectopic expression

The expression of a gene in tissues other than the tissue in which it is normally expressed.

Vomeronasal organ

An auxiliary olfactory organ that is found in many mammals, reptiles and amphibians.

Proboscis

The tubular organ in insects that is used for feeding and sucking.

Non-synonymous nucleotide substitution

A nucleotide substitution that results in a change of an amino acid within the coding region of a gene.

Synonymous nucleotide substitution

A nucleotide substitution that does not change an amino acid in the coding region of a gene.

Electroreception

The ability of an animal to perceive electrical pulses.

Mechanoreception

The ability of an animal to detect certain kinds of stimuli, such as touch, sound and changes in atmospheric pressure or posture in its environment.

Toothed whales

A suborder of cetaceans that have teeth rather than baleens (plates of whalebone). Toothed whales include dolphins, sperm whales, beaked whales and killer whales.

Echolocation

A biological sonar mechanism used by several mammals, such as whales and bats. A high-pitched sound (usually clicks) is sent out by an animal, the sound bounces off an object and some of the sound returns to the animal. Whales perceive this returning echo to determine the shape, direction, distance and texture of the object.

Birth-and-death evolution

An evolutionary mechanism that occurs in multigene families, in which new genes are created by gene duplication and some are retained in the genome for a long time as functional genes, but other genes are inactivated or eliminated from the genome.

Genetic drift

The random change of the allele frequency in populations.

Hitch-hiking

The increase in the frequency of a neutral allele at a locus that is physically linked to an advantageous allele at a different locus.

Overdominant selection

A form of selection caused by heterozygote advantage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9, 951–963 (2008). https://doi.org/10.1038/nrg2480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing