Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of human gene expression: mapping DNA variants that influence gene expression

Key Points

  • Expression levels of genes are heritable traits. Genetic determinants of individual variation in human gene expression can be mapped by linkage and association analyses.

  • Cis- and trans-acting DNA variants influence expression levels of genes. Genetics of gene expression (GOGE) studies have identified cis-acting regulatory variants of many genes; however, few trans-acting variants have yet been identified.

  • In humans, 30–50% of cis-acting variants identified in immortalized B cells have the same effects in other cell types, such as adipose tissue and blood.

  • Differences in genotype frequencies of regulatory alleles contribute to population differences in gene expression.

  • By combining results from GOGE studies with correlation analysis, one can construct directed gene co-expression networks that provide information on causal rather than just correlative relationships. The results also extend regulatory relationships from pairs to groups of genes.

  • GOGE studies in cells exposed to cellular, medical or environmental perturbations will uncover additional regulators of human gene expression.

Abstract

There is extensive natural variation in human gene expression. As quantitative phenotypes, expression levels of genes are heritable. Genetic linkage and association mapping have identified cis- and trans-acting DNA variants that influence expression levels of human genes. New insights into human gene regulation are emerging from genetic analyses of gene expression in cells at rest and following exposure to stimuli. The integration of these genetic mapping results with data from co-expression networks is leading to a better understanding of how expression levels of individual genes are regulated and how genes interact with each other. These findings are important for basic understanding of gene regulation and of diseases that result from disruption of normal gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inter-individual variation in gene expression levels.
Figure 2: Effect of cis- and trans-acting DNA variants on expression levels of genes.
Figure 3: The expression level of copine I (CPNE1) is cis regulated.
Figure 4: The expression level of programmed cell death 10 (PDCD10) is trans regulated.

Similar content being viewed by others

References

  1. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Cheung, V. G. & Spielman, R. S. The genetics of variation in gene expression. Nature Genet. 32, 522–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Cheung, V. G. et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genet. 33, 422–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS  PubMed  Google Scholar 

  5. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheung, V. G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stranger, B. E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13, R1–R7 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Li, J. & Burmeister, M. Genetical genomics: combining genetics with gene expression analysis. Hum. Mol. Genet. 14, R163–R169 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Nica, A. C. & Dermitzakis, E. T. Using gene expression to investigate the genetic basis of complex disorders. Hum. Mol. Genet. 17, R129–R134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stranger, B. E. & Dermitzakis, E. T. The genetics of regulatory variation in the human genome. Hum. Genomics 2, 126–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  19. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  20. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007). Demonstrates that regulatory variants of expression of ORMDL3 influence an individual's susceptibility to asthma.

    Article  CAS  PubMed  Google Scholar 

  22. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nature Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Cheung, V. G. et al. Genetics of quantitative variation in human gene expression. Cold Spring Harbor Symp. Quant. Biol. 68, 403–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Goring, H. H. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genet. 39, 1208–1216 (2007).

    Article  PubMed  Google Scholar 

  28. Choy, E. et al. Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines. PLoS Genet. 4, e1000287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, W. et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am. J. Hum. Genet. 82, 631–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Storey, J. D. et al. Gene-expression variation within and among human populations. Am. J. Hum. Genet. 80, 502–509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duan, S. et al. Genetic architecture of transcript-level variation in humans. Am. J. Hum. Genet. 82, 1101–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Schadt, E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whitney, A. R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Grisart, B. et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl Acad. Sci. USA 101, 2398–2403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ioannidis, J. P., Thomas, G. & Daly, M. J. Validating, augmenting and refining genome-wide association signals. Nature Rev. Genet. 10, 318–329 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Cheung, V. G. et al. Monozygotic twins reveal germline contribution to allelic expression differences. Am. J. Hum. Genet. 82, 1357–1360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pant, P. V. et al. Analysis of allelic differential expression in human white blood cells. Genome Res. 16, 331–339 (2006). A thorough study of differential allelic expression of human genes on a genome-wide scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pastinen, T. et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16, 184–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Pastinen, T., Ge, B. & Hudson, T. J. Influence of human genome polymorphism on gene expression. Hum. Mol. Genet. 15, R9–R16 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Lo, H. S. et al. Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Price, A. L. et al. Effects of cis and trans genetic ancestry on gene expression in African Americans. PLoS Genet. 4, e1000294 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Knight, J. C., Keating, B. J., Rockett, K. A. & Kwiatkowski, D. P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nature Genet. 33, 469–475 (2003). Description of a molecular method that assesses whether cis -regulatory variants influence gene expression by differential allelic binding of RNA polymerase to promoter complexes.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, X. et al. Expression-based discovery of variation in the human glutathione S-transferase M3 promoter and functional analysis in a glioma cell line using allele-specific chromatin immunoprecipitation. Cancer Res. 65, 99–104 (2005).

    CAS  PubMed  Google Scholar 

  47. Fritsche, L. G. et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nature Genet. 40, 892–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Mio, F. et al. A functional polymorphism in COL11A1, which encodes the α1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am. J. Hum. Genet. 81, 1271–1277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sankaran, V. G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839–42 (2008). Illustrates that BCL11A is a trans -acting regulator of fetal haemoglobin expression.

    Article  CAS  PubMed  Google Scholar 

  50. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genet. 3, 57–64 (2003).

    Article  Google Scholar 

  51. Spielman, R. S. et al. Common genetic variants account for differences in gene expression among ethnic groups. Nature Genet. 39, 226–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. The International Hapmap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  53. Hartford, C. M. et al. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood 113, 2145–2153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. DeCook, R., Lall, S., Nettleton, D. & Howell, S. H. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172, 1155–1164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genet. 37, 243–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Breitling, R. et al. Genetical genomics: spotlight on QTL hotspots. PLoS Genet. 4, e1000232 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Benfey, P. N. & Mitchell-Olds, T. From genotype to phenotype: systems biology meets natural variation. Science 320, 495–497 (2008). A thought-provoking review of how natural variation in gene expression can be used for network and other systems analysis. Although the focus is on plants, the ideas can be translated to all organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jordan, I. K., Marino-Ramirez, L., Wolf, Y. I. & Koonin, E. V. Conservation and coevolution in the scale-free human gene coexpression network. Mol. Biol. Evol. 21, 2058–2070 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J. & Pavlidis, P. Coexpression analysis of human genes across many microarray data sets. Genome Res. 14, 1085–1094 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gargalovic, P. S. et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl Acad. Sci. USA 103, 12741–12746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harbison, S. T. et al. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nature Genet. 41, 371–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ayroles, J. F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nature Genet. 41, 299–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Aten, J. E., Fuller, T. F., Lusis, A. J. & Horvath, S. Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol. 2, 34 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang, X. et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genet. 41, 415–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Quigley, D. A. et al. Genetic architecture of mouse skin inflammation and tumour susceptibility. Nature 457, 505–508 (2009).

    Article  Google Scholar 

  69. Smirnov, D. A., Morley, M., Shin, E., Spielman, R. S. & Cheung, V. G. Genetic analysis of radiation-induced changes in human gene expression. Nature 459, 587–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y. et al. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2, e222 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smith, E. N. & Kruglyak, L. Gene–environment interaction in yeast gene expression. PLoS Biol. 6, e83 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Abecasis, G. R., Cardon, L. R. & Cookson, W. O. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66, 279–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Abecasis, G. R., Cookson, W. O. & Cardon, L. R. Pedigree tests of transmission disequilibrium. Eur. J. Hum. Genet. 8, 545–551 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Lunetta, K. L., Faraone, S. V., Biederman, J. & Laird, N. M. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 66, 605–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rice, T. K., Schork, N. J. & Rao, D. C. Methods for handling multiple testing. Adv. Genet. 60, 293–308 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for comments and discussions. I (V.G.C.) thank C. Gunter for support and encouragement in finishing this Review. This work is supported by the National Institutes of Health and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian G. Cheung.

Related links

Related links

FURTHER INFORMATION

The Cheung laboratory

CEPH

International HapMap Project

Glossary

Gene expression phenotype

The expression level of a gene in an individual as determined by his or her genotype and the cellular environments in which the gene is expressed.

Co-expression network

Groups of interconnected genes that are linked by the correlations in their expression levels.

Heritability

The proportion of total phenotypic variation that is due to genetic variation.

Regulatory polymorphism

DNA sequence variants that regulate cellular processes such as gene expression.

Differential allelic expression

Polymorphic forms (different sequences) of a gene have different expression levels.

Admixed

An admixed population contains offspring of individuals originating from genetically divergent parental populations.

RNA-Seq

Sequence analysis of RNA (for example, after conversion into cDNA); the results can be used for various analyses, including study of gene expression, identification of coding SNPs and determination of allele-specific gene expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, V., Spielman, R. Genetics of human gene expression: mapping DNA variants that influence gene expression. Nat Rev Genet 10, 595–604 (2009). https://doi.org/10.1038/nrg2630

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing