Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adhesion mechanisms regulating the migration of monocytes

Key Points

  • Monocytes are progenitors of both tissue macrophage and dendritic-cell subsets.

  • Two classes of circulating monocytes have been identified; these have different migration properties and chemokine-receptor expression patterns.

  • The trafficking of monocytes into tissues requires the orchestrated activation of integrins by specific chemokines.

  • Signal transduction induced by chemokines targets cytosolic integrin-activating proteins, such as RHOA, RAP1, talin or PYK2, which results in cell adhesion to the blood-vessel wall.

  • Transendothelial migration of adherent monocytes requires polarization of the adherent monocytes and remodelling of the endothelial-cell junctions.

  • The trafficking of monocytes to their final tissue depends on chemotactic gradients and specific expression of adhesion molecules, which are regulated by inflammation.

Abstract

Because of their phagocytic activity and their ability to differentiate into antigen-presenting cells, monocytes participate in both innate and adaptive immune responses. They derive from bone-marrow progenitor cells, circulate in the blood as monocytes and differentiate into tissue macrophages or myeloid dendritic cells in the periphery. After activation by an antigenic challenge in the tissues, they can contribute to the local resolution of the injury or can migrate farther to secondary lymphoid organs. Recruitment of these cells from the blood to the tissue and from the tissue to the lymph nodes requires orchestrated adhesive interactions between leukocytes and the vascular or lymphatic endothelium. Here, we discuss the signals by which chemokines regulate the leukocyte-adhesion molecules that are essential for transendothelial migration, and we describe the routes taken by monocytes and myeloid dendritic cells to reach their final destination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin and haematopoietic differentiation of myeloid antigen-presenting cells.
Figure 2: Integrin activation and clustering during leukocyte migration.
Figure 3: Extravasation of leukocytes from a blood vessel into lymph-node tissue.
Figure 4: Chemokine-driven migration of monocytes and DC progenitors.
Figure 5: Adhesion molecules involved in the migration of monocytes to non-inflamed and inflamed tissues.

Similar content being viewed by others

References

  1. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  2. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Warren, M. K. & Vogel, S. N. Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons. J. Immunol. 134, 982–989 (1985).

    CAS  PubMed  Google Scholar 

  5. Zhou, L. J. & Tedder, T. F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl Acad. Sci. USA 93, 2588–2592 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. del Hoyo, G. M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  PubMed  Google Scholar 

  7. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999). The first demonstration that monocytes recruited into tissues by latex beads can migrate to draining lymph nodes and differentiate into DCs. This population differs from Langerhans cells, which are activated and recruited to the draining lymph nodes after the epicutaneous application of contact sensitizers.

    Article  CAS  PubMed  Google Scholar 

  8. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003). Reports the identification of two mouse monocyte subsets, which are based on the cell-surface expression of CX 3 CR1 and Gr1. These subsets are comparable to the two human monocyte subpopulations: CD14hiCD16low and CD14low CD16hi. Using adoptive transfer experiments, the CX 3 CR1lowGr1+ subset of monocytes were shown to migrate preferentially to inflamed tissues.

    Article  CAS  PubMed  Google Scholar 

  9. Ancuta, P. et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J. Exp. Med. 197, 1701–1707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ingulli, E., Ulman, D. R., Lucido, M. M. & Jenkins, M. K. In situ analysis reveals physical interactions between CD11b+ dendritic cells and antigen-specific CD4 T cells after subcutaneous injection of antigen. J. Immunol. 169, 2247–2252 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janatpour, M. J., Hudak, S., Sathe, M., Sedgwick, J. D. & McEvoy, L. M. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 194, 1375–1384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Spillmann, D., Witt, D. & Lindahl, U. Defining the interleukin-8-binding domain of heparan sulfate. J. Biol. Chem. 273, 15487–15493 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Halden, Y. et al. Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem. J. 377, 533–538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka, Y. et al. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β. Nature 361, 79–82 (1993). Describes the concept that soluble chemokines have two sites of interaction: one that immobilizes them on vascular proteoglycans and another that reacts with chemokine receptors on rolling leukocytes.

    Article  CAS  PubMed  Google Scholar 

  17. Roscic-Mrkic, B. et al. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 102, 1169–1177 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Proudfoot, A. E., Power, C. A. & Wells, T. N. The strategy of blocking the chemokine system to combat disease. Immunol. Rev. 177, 246–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Thelen, M. Dancing to the tune of chemokines. Nature Immunol. 2, 129–134 (2001).

    Article  CAS  Google Scholar 

  20. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol. 20, 1956–1969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reedquist, K. A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148, 1151–1158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bos, J. L., de Rooij, J. & Reedquist, K. A. Rap1 signalling: adhering to new models. Nature Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  23. Caron, E., Self, A. J. & Hall, A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr. Biol. 10, 974–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. McLeod, S. J., Shum, A. J., Lee, R. L., Takei, F. & Gold, M. R. The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J. Biol. Chem. 279, 12009–12019 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bos, J. L. Epac: a new cAMP target and new avenues in cAMP research. Nature Rev. Mol. Cell Biol. 4, 733–738 (2003).

    Article  CAS  Google Scholar 

  26. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003). This key paper shows that chemokines induce shear-force-resistant integrin activation by signal transduction through RAP1. Most importantly, it shows that RAP1 activity polarizes the leukocyte-migration machinery and induces transendothelial migration of leukocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imhof, B. A. & Dunon, D. Leukocyte migration and adhesion. Adv. Immunol. 58, 345–416 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Tohyama, Y. et al. The critical cytoplasmic regions of the αLβ2 integrin in Rap1-induced adhesion and migration. Mol. Biol. Cell 14, 2570–2582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol. 4, 741–748 (2003). Demonstrates that the RAP1–RAPL interaction leads to polarized integrin activation in the lamellipodium, thereby enabling cell migration.

    Article  CAS  Google Scholar 

  30. Tadokoro, S. et al. Talin binding to integrin-β tails: a final common step in integrin activation. Science 302, 103–106 (2003). Shows that the binding of talin to the β-chains of integrins activates them by enhancing their affinity. Talin binding is therefore a final step in the signalling cascades that control integrin activation.

    Article  CAS  PubMed  Google Scholar 

  31. Calderwood, D. A. Integrin activation. J. Cell Sci. 117, 657–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature 420, 85–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type I γ-phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Datta, A., Huber, F. & Boettiger, D. Phosphorylation of β3 integrin controls ligand binding strength. J. Biol. Chem. 277, 3943–3949 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sakai, T., Jove, R., Fassler, R. & Mosher, D. F. Role of the cytoplasmic tyrosines of β1A integrins in transformation by v-src. Proc. Natl Acad. Sci. USA 98, 3808–3813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alblas, J., Ulfman, L., Hordijk, P. & Koenderman, L. Activation of RhoA and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell 12, 2137–2145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ridley, A. J. & Hall, A. Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J. 13, 2600–2610 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laudanna, C., Kim, J. Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Worthylake, R. A. & Burridge, K. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T-cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Giagulli, C. et al. RhoA and ζ-PKC control distinct modalities of LFA-1 activation by chemokines. Critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 20, 25–35 (2004). Examines three different functional domains of the GTPase RHOA. It shows that RHOA increases the affinity of integrins for their ligands through a signal-transduction pathway involving PI3K. It also increases the mobility and polarization of activated integrins by signalling involving the atypical protein kinase, PKC-ζ.

    Article  CAS  PubMed  Google Scholar 

  43. Fujisawa, K. et al. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273, 18943–18949 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Aspenstrom, P. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11, 95–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Reid, T. et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the Rho-binding domain. J. Biol. Chem. 271, 13556–13560 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000). An in vivo proof that chemokines induce Pyk2-mediated cell adhesion and migration, which is also shown to be crucial for the positioning of immune cells in lymphoid organs. Pyk2 deficiency was found to mainly affect the humoral immune responses of mice.

    Article  CAS  Google Scholar 

  49. Avraham, H., Park, S. Y., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal. 12, 123–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Gismondi, A. et al. Proline-rich tyrosine kinase-2 activation by β1 integrin fibronectin receptor cross-linking and association with paxillin in human natural killer cells. J. Immunol. 159, 4729–4736 (1997).

    CAS  PubMed  Google Scholar 

  51. Okigaki, M. et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc. Natl Acad. Sci. USA 100, 10740–10745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Owen, J. D., Ruest, P. J., Fry, D. W. & Hanks, S. K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol. 19, 4806–4818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imhof, B. A. et al. Cross talk between αvβ3 and α4β1 integrins regulates lymphocyte migration on vascular cell adhesion molecule 1. Eur. J. Immunol. 27, 3242–3252 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol. 5, 301–308 (2003). The downstream effectors of signal transduction cascades that lead to cell migration are called polarity complexes. This paper indicates that the protein complex PAR6, atypical PKC and LGL are involved in the delivery of new lipid membrane to zones of lamellipodium propulsion.

    Article  CAS  PubMed  Google Scholar 

  58. Hughes, P. E. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571–6574 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Johnson-Leger, C. & Imhof, B. A. Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res. 314, 93–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson-Leger, C., Aurrand-Lions, M. & Imhof, B. A. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113, 921–933 (2000).

    CAS  PubMed  Google Scholar 

  62. Luscinskas, F. W., Ma, S., Nusrat, A., Parkos, C. A. & Shaw, S. K. Leukocyte transendothelial migration: a junctional affair. Semin. Immunol. 14, 105–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  64. Ebnet, K., Suzuki, A., Ohno, S. & Vestweber, D. Junctional adhesion molecules (JAMs): more molecules with dual functions? J. Cell Sci. 117, 19–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Bazzoni, G. The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol. 15, 525–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malergue, F. et al. A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol. Immunol. 35, 1111–1119 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Ostermann, G., Weber, K. S., Zernecke, A., Schroder, A. & Weber, C. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nature Immunol. 3, 151–158 (2002).

    Article  CAS  Google Scholar 

  69. Bazzoni, G. et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 275, 20520–20526 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Martinez-Estrada, O. M. et al. Association of junctional adhesion molecule with calcium/calmodulin-dependent serine protein kinase (CASK/LIN-2) in human epithelial Caco-2 cells. J. Biol. Chem. 276, 9291–9296 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Ebnet, K., Schulz, C. U., Meyer zu Brickwedde, M. -K., Pendl, G. G. & Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  72. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ozaki, H. et al. Cutting edge: Combined treatment of TNF-α and IFN-γ causes redistribution of junctional adhesion molecule in human endothelial cells. J. Immunol. 163, 553–557 (1999).

    CAS  PubMed  Google Scholar 

  74. Shaw, S. K. et al. Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhesion molecule-1 (CD31) at human vascular endothelial junctions by cytokines tumor necrosis factor-α plus interferon-γ does not reduce leukocyte transmigration under flow. Am. J. Pathol. 159, 2281–2291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aurrand-Lions, M. A., Duncan, L., Ballestrem, C. & Imhof, B. A. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J. Biol. Chem. 276, 2733–2741 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Cunningham, S. A. et al. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J. Biol. Chem. 275, 34750–34756 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Arrate, M. P., Rodriguez, J. M., Tran, T. M., Brock, T. A. & Cunningham, S. A. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J. Biol. Chem. 276, 45826–45832 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Palmeri, D., van Zante, A., Huang, C. C., Hemmerich, S. & Rosen, S. D. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J. Biol. Chem. 275, 19139–19145 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Santoso, S. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J. Exp. Med. 196, 679–691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cunningham, S. A., Rodriguez, J. M., Arrate, M. P., Tran, T. M. & Brock, T. A. JAM2 interacts with α4β1. Facilitation by JAM3. J. Biol. Chem. 277, 27589–27592 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Johnson-Leger, C. A., Aurrand-Lions, M., Beltraminelli, N., Fasel, N. & Imhof, B. A. Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100, 2479–2486 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000).

    CAS  PubMed  Google Scholar 

  83. Huelsken, J. & Behrens, J. The Wnt signalling pathway. J. Cell Sci. 115, 3977–3978 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Lampugnani, M. G. et al. A novel endothelial-specific membrane protein is a marker of cell–cell contacts. J. Cell Biol. 118, 1511–1522 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Allport, J. R., Muller, W. A. & Luscinskas, F. W. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J. Cell Biol. 148, 203–216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaw, S. K., Bamba, P. S., Perkins, B. N. & Luscinskas, F. W. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J. Immunol. 167, 2323–2330 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Mamdouh, Z., Chen, X., Pierini, L. M., Maxfield, F. R. & Muller, W. A. Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421, 748–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Wong, C. W. et al. PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin αvβ3 in cis. Mol. Biol. Cell 11, 3109–3121 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muller, W. A. Leukocyte–endothelial cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    CAS  PubMed  Google Scholar 

  91. Duncan, G. S. et al. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162, 3022–3030 (1999).

    CAS  PubMed  Google Scholar 

  92. Dangerfield, J., Larbi, K. Y., Huang, M. T., Dewar, A. & Nourshargh, S. PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J. Exp. Med. 196, 1201–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunol. 3, 143–150 (2002).

    Article  CAS  Google Scholar 

  94. Aurrand-Lions, M., Johnson-Leger, C. & Imhof, B. A. The last molecular fortress in leukocyte trans-endothelial migration. Nature Immunol. 3, 116–118 (2002).

    Article  CAS  Google Scholar 

  95. Beyer, E. C. Gap junctions. Int. Rev. Cytol. 137C, 1–37 (1993).

    CAS  PubMed  Google Scholar 

  96. Van Rijen, H. et al. Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am. J. Physiol. 272, C117–C130 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. van Rijen, H. V., van Kempen, M. J., Postma, S. & Jongsma, H. J. Tumour necrosis factor-α alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 10, 258–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Eugenin, E. A., Branes, M. C., Berman, J. W. & Saez, J. C. TNF-α plus IFN-γ induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J. Immunol. 170, 1320–1328 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Jara, P. I., Boric, M. P. & Saez, J. C. Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc. Natl Acad. Sci. USA 92, 7011–7015 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oviedo-Orta, E., Errington, R. J. & Evans, W. H. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol. Int. 26, 253–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Zahler, S., Hoffmann, A., Gloe, T. & Pohl, U. Gap-junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J. Leukoc. Biol. 73, 118–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Kurth, I. et al. Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J. Exp. Med. 194, 855–861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, D., Biragyn, A., Kwak, L. W. & Oppenheim, J. J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Hume, D. A., Robinson, A. P., MacPherson, G. G. & Gordon, S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J. Exp. Med. 158, 1522–1536 (1983).

    Article  CAS  PubMed  Google Scholar 

  106. Witmer-Pack, M. D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci. 104, 1021–1029 (1993).

    PubMed  Google Scholar 

  107. Takahashi, K., Naito, M., Shultz, L. D., Hayashi, S. & Nishikawa, S. Differentiation of dendritic cell populations in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation. J. Leukoc. Biol. 53, 19–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Kennedy, D. W. & Abkowitz, J. L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993 (1997).

    CAS  PubMed  Google Scholar 

  109. Hochrein, H. et al. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol. 166, 5448–5455 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Holt, P. G., Haining, S., Nelson, D. J. & Sedgwick, J. D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 153, 256–261 (1994).

    CAS  PubMed  Google Scholar 

  111. Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. & Pauwels, R. A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193, 51–60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schneeberger, E. E., Vu, Q., LeBlanc, B. W. & Doerschuk, C. M. The accumulation of dendritic cells in the lung is impaired in CD18−/− but not in ICAM-1−/− mutant mice. J. Immunol. 164, 2472–2478 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002). Provides evidence that constitutive presentation of one self-antigen is mediated by DCs under non-inflammatory conditions and that this does not necessarily result in the depletion of autoreactive T cells. Tissue destruction is also shown to increase the number of lymph-node DCs containing self-antigen, possibly contributing to the amplification of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Figdor, C. G. et al. Isolation of functionally different human monocytes by counterflow centrifugation elutriation. Blood 60, 46–53 (1982).

    CAS  PubMed  Google Scholar 

  118. Grage-Griebenow, E., Flad, H. D. & Ernst, M. Heterogeneity of human peripheral blood monocyte subsets. J. Leukoc. Biol. 69, 11–20 (2001).

    CAS  PubMed  Google Scholar 

  119. Weber, C. et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J. Leukoc. Biol. 67, 699–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Gerszten, R. E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723. (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Boring, L. et al. Impaired monocyte migration and reduced type 1 (TH1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kuziel, W. A. et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl Acad. Sci. USA 94, 12053–12058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tedder, T. F., Steeber, D. A. & Pizcueta, P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J. Exp. Med. 181, 2259–2264 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Henderson, R. B., Hobbs, J. A., Mathies, M. & Hogg, N. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102, 328–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Rosen, H. Role of CR3 in induced myelomonocytic recruitment: insights from in vivo monoclonal antibody studies in the mouse. J. Leukoc. Biol. 48, 465–469 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Rosen, H. & Gordon, S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J. Exp. Med. 166, 1685–1701 (1987).

    Article  CAS  PubMed  Google Scholar 

  129. Issekutz, T. B. In vivo blood monocyte migration to acute inflammatory reactions, IL-1α, TNF-α, IFN-γ, and C5a utilizes LFA-1, Mac-1, and VLA-4. The relative importance of each integrin. J. Immunol. 154, 6533–6540 (1995).

    CAS  PubMed  Google Scholar 

  130. Meerschaert, J. & Furie, M. B. The adhesion molecules used by monocytes for migration across endothelium include CD11a/CD18, CD11b/CD18, and VLA-4 on monocytes and ICAM-1, VCAM-1, and other ligands on endothelium. J. Immunol. 154, 4099–4112 (1995).

    CAS  PubMed  Google Scholar 

  131. Aurrand-Lions, M., Johnson-Leger, C., Wong, C., Du Pasquier, L. & Imhof, B. A. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 98, 3699–3707 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Muller, W. A., Weigl, S. A., Deng, X. & Phillips, D. M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178, 449–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Liao, F. et al. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J. Exp. Med. 182, 1337–1343 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Liao, F., Ali, J., Greene, T. & Muller, W. A. Soluble domain 1 of platelet/endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J. Exp. Med. 185, 1349–1357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao, T. & Newman, P. J. Integrin activation by regulated dimerization and oligomerization of platelet endothelial cell adhesion molecule (PECAM)-1 from within the cell. J. Cell Biol. 152, 65–73 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  137. Bellingan, G. J. et al. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med. 196, 1515–1521 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M. & Muller, W. A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Randolph, G. J., Sanchez-Schmitz, G., Liebman, R. M. & Schakel, K. The CD16+ (FcγRIII+) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 196, 517–527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sallusto, F. & Lanzavecchia, A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J. Exp. Med. 189, 611–614 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Martin-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003). A careful examination of the mechanisms involved in DC migration from tissues to lymph nodes and their functional consequences on lymph-node cellularity and T-cell response. The migration of bone-marrow-derived DCs is dependent on CCR7 and correlates with the level of CCL21 expressed by lymphatic endothelial cells after exposure to inflammatory stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rotta, G. et al. Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo. J. Exp. Med. 198, 1253–1263 (2003). Illustrates the complexity of the mechanisms regulating the ability of monocytes to differentiate into DCs that subsequently migrate to lymph nodes. The migration of monocyte-derived DCs to draining lymph nodes is inhibited by LPS, whereas the migration of Langerhans cells is not, indicating that local inflammatory signals are a negative regulator of adaptive immune responses to particulate antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McEvoy, L. M., Jutila, M. A., Tsao, P. S., Cooke, J. P. & Butcher, E. C. Anti-CD43 inhibits monocyte–endothelial adhesion in inflammation and atherogenesis. Blood 90, 3587–3594 (1997).

    CAS  PubMed  Google Scholar 

  146. Hart, D. N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245–3287 (1997).

    CAS  PubMed  Google Scholar 

  147. Robert, C. et al. Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance. J. Exp. Med. 189, 627–636 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Geijtenbeek, T. B. et al. DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nature Immunol. 1, 353–357. (2000).

    Article  CAS  Google Scholar 

  149. Pendl, G. G. et al. Immature mouse dendritic cells enter inflamed tissue, a process that requires E- and P-selectin, but not P-selectin glycoprotein ligand 1. Blood 99, 946–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Arbones, M. L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260. (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Johnston, B. & Kubes, P. The α4-integrin: an alternative pathway for neutrophil recruitment? Immunol. Today 20, 545–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Vaporciyan, A. A. et al. Involvement of platelet/endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262, 1580–1582 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Christofidou-Solomidou, M., Nakada, M. T., Williams, J., Muller, W. A. & DeLisser, H. M. Neutrophil platelet endothelial cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte extravasation. J. Immunol. 158, 4872–4878 (1997).

    CAS  PubMed  Google Scholar 

  154. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lagasse, E. & Weissman, I. L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 197, 139–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Ajuebor, M. N. et al. Endogenous monocyte chemoattractant protein–1 recruits monocytes in the zymosan peritonitis model. J. Leukoc. Biol. 63, 108–116 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swiss National Science Foundation and the Ligne National Centre Le Cancer. We thank B. Wehrle-Haller for his valuable advice and suggestions concerning integrin activation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat A. Imhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

α4β1-integrin

α5β1-integrin

α6β1-integrin

αMβ2-integrin

αXβ2-integrin

afadin

CASK

CCL2

CCL3

CCL5

CCL21

CCR2

CCR5

CCR7

CD14

CD16

CD43

CD44

CD62L

CD99

CDC42

citron kinase

cingulin

connexin 43

CX3CL1

CX3CR1

CXCL8

CXCL9

CXCL12

CXCL14

DC-SIGN

E-selectin

FAK

GSK3β

HRAS

ICAM1

ICAM2

JAM-A

JAM-B

JAM-C

LFA1

LGL

occludin

PAR3

PAR6

PECAM1

PI3K

PKC-ζ

P-selectin

PYK2

RAC

RAP1

RAP2

RAPL

RHOA

rhotekin

ROCK1

SMURF1

SPA1

syndecan 1

syndecan 2

syndecan 4

talin

VCAM1

VE-cadherin

ZO1

Glossary

GLY-PHE-PHE-LYS-ARG MOTIF

A conserved amino-acid motif present in the cytoplasmic domain of the α-chains of integrins. It enables the α- and β-chain of an integrin to be held in close contact, which then keeps the extracellular ligand-binding domain in a folded inactive form. Lysines (amino acids proximal to the Gly-Phe-Phe-Lys-Arg motif) are essential for the interaction of the integrin α-chain with RAPL. The binding of RAPL contributes to the spatial separation of the cytoplasmic domains of the integrin chains, allowing the unfolding of the extracellular portion into a functional ligand-binding integrin.

ASN-PRO-XAA-TYR/PHE MOTIF

A conserved amino-acid motif present in the cytoplasmic domain of the β-chains of integrins. It is a docking sequence for talin. Talin–integrin interactions mediate integrin activation. It is probable (but not yet experimentally proven) that this occurs through facilitating an optimal spatial separation of the cytoplasmic domains of the integrin chains, thereby allowing the unfolding of the extracellular portion into a functional ligand-binding integrin.

MEMBRANE RUFFLING

A cellular zone undergoing rapid reorganization of the plasma membrane and the actin cytoskeleton. Membrane ruffling often precedes the formation of a lamellipodium.

LAMELLIPODIUM

A flattened projection protruding from the anterior region of a cell. It is an actin-rich zone that is formed in response to chemokine signals, and it propels a migrating cell forward.

POLARITY COMPLEX

Polarity complex molecules were first discovered in Drosophila melanogaster and Caenorhabditis elegans. They are required for the development of anterior–posterior polarity in leukocytes and apical–basal polarity in epithelial and endothelial cells. In migrating cells, some of these complexes are enriched in the lamellipodium.

FOCAL ADHESION COMPLEXES

The closest contact sites of a cell with its environment, which are formed by integrin clustering. The integrins link the extracellular environment to the actin cytoskeleton by a complex assembly of adaptor proteins.

UROPOD

A structure formed at the posterior of a migrating leukocyte. Adhesion molecules, such as intercellular adhesion molecule 1 (ICAM1) or CD44, are enriched in this zone.

DIAPEDESIS

The last step in the leukocyte–endothelial adhesion cascade. The cascade includes tethering, triggering, tight adhesion and transmigration. Diapedesis is the migration of leukocytes across the endothelium, which occurs by squeezing through the junctions between adjacent endothelial cells.

DEFENSINS

Defensins are small (2–6 kDa) cationic microbicidal peptides that participate in innate immunity. Their tertiary structures are stabilized by intradisulphide bridges and clusters of positively charged amino acids, which resemble those found in chemokines. Several defensins have chemotactic activity for leukocytes.

OP/OP MICE

A inbred strain of mice that suffer from osteopetrosis. The defect has been localized to the gene encoding macrophage colony-stimulating factor.

THIOGLYCOLLATE-INDUCED PERITONITIS

Inflammation of the peritoneum induced by sterile injection of thioglycollate. This results in the sequential recruitment of granulocytes (within hours), monocytes (within 2 days) and lymphocytes (after 2–3 days). It is widely used to study acute inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imhof, B., Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4, 432–444 (2004). https://doi.org/10.1038/nri1375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing