Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

cFLIP regulation of lymphocyte activation and development

Key Points

  • Cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) is an enzymatically inert homologue of caspase-8 that competes with caspase-8 for recruitment to the death-inducing signalling complex (DISC).

  • Paradoxically, cFLIP can also heterodimerize with caspase-8, which results in activation of the full-length caspase-8 protein.

  • Caspase-8 activity is necessary to initiate the activation of nuclear factor-κB (NF-κB) and to promote proliferation of T cells, and possibly other cell types. Increased expression of cFLIP can augment caspase-8 activity following T-cell receptor (TCR) ligation on T cells. This results in both increased proliferation, and also, ultimately, increased cell death.

  • cFLIP can associate with adaptor proteins such as tumour-necrosis-factor-receptor-associated factor 2 (TRAF2) that link to the NF-κB pathway. Therefore, increased expression of cFLIP might augment NF-κB activity in some situations, but it has also been reported to decrease NF-κB signalling following CD95 (also known as FAS) stimulation. The explanation for these disparate results is not certain at present.

  • T cells lacking cFLIP manifest decreased proliferation and survival. This might be related to decreased production of and response to interleukin-2 (IL-2) by the cFLIP-deficient T cells.

  • cFLIP might be crucial to effector function in many other cell types; for example, myeloid dendritic cells, which express high levels of cFLIP, are resistant to FAS-mediated cell death, and produce large amounts of several cytokines and mediate upregulation of CD80 and CD86 in response to CD95 ligation.

Abstract

Cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) was originally identified as an inhibitor of death-receptor signalling through competition with caspase-8 for recruitment to FAS-associated via death domain (FADD). More recently, it has been determined that both cFLIP and caspase-8 are required for the survival and proliferation of T cells following T-cell-receptor stimulation. This paradoxical finding launched new investigations of how these molecules might connect with signalling pathways that link to cell survival and growth following antigen-receptor activation. As discussed in this Review, insight gained from these studies indicates that cFLIP and caspase-8 form a heterodimer that ultimately links T-cell-receptor signalling to activation of nuclear factor-κB through a complex that includes B-cell lymphoma 10 (BCL-10), mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1) and receptor-interacting protein 1 (RIP1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of CD95 and T-cell-receptor-mediated signalling by caspase-8 and cFLIP.
Figure 2: Molecular structure of viral and cFLIP.
Figure 3: cFLIP modulates activation of caspase-8 and nuclear factor-κB.

Similar content being viewed by others

References

  1. Chang, D. W. et al. c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 21, 3704–3714 (2002). One of the first descriptions of the ability of cFLIP L to activate full-length caspase-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signalling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  3. Kataoka, T. & Tschopp, J. N-terminal fragment of c-FLIPL processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB signalling pathway. Mol. Cell. Biol. 24, 2627–2636 (2004). An important study showing that p43cFLIP can recruit TRAF2 more efficiently than cFLIP L . This might indicate that cFLIP L is an important caspase-8 substrate following T-cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dohrman, A. et al. Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. J. Immunol. 175, 311–318 (2005).

    CAS  PubMed  Google Scholar 

  5. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    CAS  PubMed  Google Scholar 

  6. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–520 (1997). The original description of FLIP as a viral protein before the discovery of cellular FLIP.

    CAS  PubMed  Google Scholar 

  7. Hu, S., Vincez, C., Buller, M. & Dixit, V. M. A novel family of viral death effector domain-containing molecules that inhibit both CD95 and tumour necrosis factor receptor -1-induced apoptosis. J. Biol. Chem. 272, 9621–9624 (1997).

    CAS  PubMed  Google Scholar 

  8. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 1172–1176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofmann, K. The modular nature of apoptotic signalling proteins. Cell Mol. Life Sci. 55, 1113–1128 (1999).

    CAS  PubMed  Google Scholar 

  10. Searles, R. P., Bergquam, E. P., Axthelm, M. K. & Wong, S. W. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol. 73, 3040–3053 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Shu, H. B., Halpin, D. R. & Goeddel, D. V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6, 751–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Srinivasula, S. M. et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J. Biol. Chem. 272, 18542–18545 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Inohara, N., Koseki, T., Hu, Y., Chen, S. & Nunez, G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc. Natl Acad. Sci. USA 94, 10717–10722 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goltsev, Y. V. et al. CASH, a novel caspase homologue with death effector domains. J. Biol. Chem. 272, 19641–19644 (1997).

    CAS  PubMed  Google Scholar 

  16. Han, D. K. et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death. Proc. Natl Acad. Sci. USA 94, 11333–11338 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, S., Vincenz, C., Ni, J., Gentz, R. & Dixit, V. M. I-FLICE, a novel inhibitor of tumour necrosis factor receptor-1 and CD95-induced apoptosis. J. Biol. Chem. 272, 17255–17257 (1997).

    CAS  PubMed  Google Scholar 

  18. Rasper, D. M. et al. Cell death attenuation by 'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ. 5, 271–288 (1998).

    CAS  PubMed  Google Scholar 

  19. Tschopp, J., Irmler, M. & Thome, M. Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552–558. (1998).

    CAS  PubMed  Google Scholar 

  20. Golks, A., Brenner, D., Fritsch, C., Krammer, P. H. & Lavrik, I. N. c-FLIPR, a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280, 14507–14513 (2005).

    CAS  PubMed  Google Scholar 

  21. Poukkula, M. et al. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280, 27345–27355 (2005).

    CAS  PubMed  Google Scholar 

  22. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16 (1997). An excellent review of caspase structure and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Krueger, A., Schmitz, I., Baumann, S., Krammer, P. H. & Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signalling complex. J. Biol. Chem. 276, 20633–20640 (2001).

    CAS  PubMed  Google Scholar 

  24. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signalling complex. J. Biol. Chem. 277, 45162–45171 (2002). An important description of cFLIP L as an activator of caspase-8.

    CAS  PubMed  Google Scholar 

  25. Dohrman, A. et al. Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J. Immunol. 174, 5270–5278 (2005).

    CAS  PubMed  Google Scholar 

  26. Kennedy, N. J., Kataoka, T., Tschopp, J. & Budd, R. C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999). References 26–28 describe the requirement of caspase activity, and specifically caspase-8, for T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alam, A., Cohen, L. Y., Aouad, S. & Sekaly, R. P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    CAS  PubMed  Google Scholar 

  29. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signalling pathways. Curr. Biol. 10, 640–648 (2000). The first demonstration that cFLIP could augment activation of ERK and NF-κB.

    CAS  PubMed  Google Scholar 

  30. Kreuz, S. et al. NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J. Cell Biol. 166, 369–380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Legembre, P. et al. Induction of apoptosis and activation of NF-κB by CD95 require different signalling thresholds. EMBO Rep. 5, 1084–1089 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barnhart, B. C. et al. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumour cells. EMBO J. 23, 3175–3185 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, W. H., Johnson, H. & Shu, H. B. Activation of NF-κB by FADD, Casper, and caspase-8. J. Biol. Chem. 275, 10838–10844 (2000).

    CAS  PubMed  Google Scholar 

  34. Alappat, E. C. et al. Phosphorylation of FADD at Serine 194 by CKIα regulates its nonapoptotic activities. Mol. Cell 19, 321–332 (2005).

    CAS  PubMed  Google Scholar 

  35. Scaffidi, C. et al. Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J. Immunol. 164, 1236–1242 (2000).

    CAS  PubMed  Google Scholar 

  36. Hua, Z. C., Sohn, S. J., Kang, C., Cado, D. & Winoto, A. A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 18, 513–521 (2003).

    CAS  PubMed  Google Scholar 

  37. Yang, B. F., Xiao, C., Roa, W. H., Krammer, P. H. & Hao, C. Calcium/calmodulin-dependent protein kinase II regulation of c-FLIP expression and phosphorylation in modulation of Fas-mediated signalling in malignant glioma cells. J. Biol. Chem. 278, 7043–7050 (2003).

    CAS  PubMed  Google Scholar 

  38. Higuchi, H. et al. Bile acids stimulate cFLIP phosphorylation enhancing TRAIL-mediated apoptosis. J. Biol. Chem. 278, 454–461 (2003).

    CAS  PubMed  Google Scholar 

  39. Fukazawa, T. et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 20, 5225–5231 (2001).

    CAS  PubMed  Google Scholar 

  40. Desbarats, J. et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nature Cell Biol. 5, 118–125 (2003).

    CAS  PubMed  Google Scholar 

  41. Davidson, S. M., Stephanou, A. & Latchman, D. S. FLIP protects cardiomyocytes from apoptosis induced by simulated ischemia/reoxygenation, as demonstrated by short hairpin-induced (shRNA) silencing of FLIP mRNA. J. Mol. Cell. Cardiol. 35, 1359–1364 (2003).

    CAS  PubMed  Google Scholar 

  42. Bouchet, D. et al. Differential sensitivity of endothelial cells of various species to apoptosis induced by gene transfer of Fas ligand: role of FLIP levels. Mol. Med. 8, 612–623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marconi, A. et al. FLICE/caspase-8 activation triggers anoikis induced by β1-integrin blockade in human keratinocytes. J. Cell. Sci. 117, 5815–5823 (2004).

    CAS  PubMed  Google Scholar 

  44. Maedler, K. et al. FLIP switches Fas-mediated glucose signalling in human pancreatic β cells from apoptosis to cell replication. Proc. Natl Acad. Sci. USA 99, 8236–8241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashany, D., Savir, A., Bhardwaj, N. & Elkon, K. B. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J. Immunol. 163, 5303–5311 (1999).

    CAS  PubMed  Google Scholar 

  46. Rescigno, M. et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1β, and the production of interferon-γ in the absence of IL-12 during DC-T cell cognate interaction. A new role for fas ligand in inflammatory responses. J. Exp. Med. 192, 1661–1668 (2000). An important demonstration that CD95 might provide activation signals rather than inducing cell death of DCs, because they express high levels of cFLIP.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiener, P. A. et al. Differential induction of apoptosis by Fas–Fas ligand interactions in human monocytes and macrophages. J. Exp. Med. 185, 1511–1516 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, H., Whartenby, K. A., Georgantas, R. W., Wingard, J. & Civin, C. I. Human CD34+ hematopoietic stem/progenitor cells express high levels of FLIP and are resistant to Fas-mediated apoptosis. Stem Cells 20, 174–182 (2002).

    CAS  PubMed  Google Scholar 

  49. Giampietri, C. et al. FLIP is expressed in mouse testis and protects germ cells from apoptosis. Cell Death Differ. 10, 175–184 (2003).

    CAS  PubMed  Google Scholar 

  50. Yeh, J. H., Hsu, S. C., Han, S. H. & Lai, M. Z. Mitogen-activated protein kinase kinase antagonized Fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J. Exp. Med. 188, 1795–1802 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schlapbach, R. et al. TGF-β induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur. J. Immunol. 30, 3680–3688 (2000).

    CAS  PubMed  Google Scholar 

  52. Qiao, L. et al. Bile acid regulation of C/EBPβ, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol. Cell. Biol. 23, 3052–3066 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, W., Prince, C. Z., Mou, Y. & Pollman, M. J. Notch3 signalling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. J. Biol. Chem. 277, 21723–21729 (2002).

    CAS  PubMed  Google Scholar 

  54. Panka, D. J., Mano, T., Suhara, T., Walsh, K. & Mier, J. W. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumour cells. J. Biol. Chem. 276, 6893–6896 (2001).

    CAS  PubMed  Google Scholar 

  55. Suhara, T., Mano, T., Oliveira, B. E. & Walsh, K. Phosphatidylinositol 3-kinase/Akt signalling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ. Res. 89, 13–19 (2001).

    CAS  PubMed  Google Scholar 

  56. Nam, S. Y. et al. Upregulation of FLIPS by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci. 94, 1066–1073 (2003).

    CAS  PubMed  Google Scholar 

  57. Poulaki, V. et al. Regulation of Apo2L/tumour necrosis factor-related apoptosis-inducing ligand-induced apoptosis in thyroid carcinoma cells. Am. J. Pathol. 161, 643–654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sade, H., Krishna, S. & Sarin, A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signalling in T cells. J. Biol. Chem. 279, 2937–2944 (2004).

    CAS  PubMed  Google Scholar 

  59. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signalling. Mol. Cell. Biol. 21, 3964–3973 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    CAS  PubMed  Google Scholar 

  62. Volpert, O. V. et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nature Med. 8, 349–357 (2002).

    CAS  PubMed  Google Scholar 

  63. Zaichuk, T. A. et al. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J. Exp. Med. 199, 1513–1522 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartke, T. et al. p53 upregulates cFLIP, inhibits transcription of NF-κB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20, 571–580 (2001).

    CAS  PubMed  Google Scholar 

  65. Inoue, H. et al. Adenoviral-mediated transfer of p53 gene enhances TRAIL-induced apoptosis in human hepatocellular carcinoma cells. Int. J. Mol. Med. 14, 271–275 (2004).

    CAS  PubMed  Google Scholar 

  66. Ricci, M. S. et al. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol. Cell. Biol. 24, 8541–8555 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stassi, G. et al. Control of target cell survival in thyroid autoimmunity by T helper cytokines via regulation of apoptotic proteins. Nature Immunol. 1, 483–488 (2000).

    CAS  Google Scholar 

  68. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  69. Kovalovich, K. et al. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL. J. Biol. Chem. 276, 26605–26613 (2001).

    CAS  PubMed  Google Scholar 

  70. Lee, S. W., Park, Y., Yoo, J. K., Choi, S. Y. & Sung, Y. C. Inhibition of TCR-induced CD8 T cell death by IL-12: regulation of Fas ligand and cellular FLIP expression and caspase activation by IL-12. J. Immunol. 170, 2456–2460 (2003).

    CAS  PubMed  Google Scholar 

  71. Conticello, C. et al. IL-4 protects tumour cells from anti-CD95 and chemotherapeutic agents via upregulation of antiapoptotic proteins. J. Immunol. 172, 5467–5477 (2004).

    CAS  PubMed  Google Scholar 

  72. Eslick, J. et al. IL-4 and IL-10 inhibition of spontaneous monocyte apoptosis is associated with Flip upregulation. Inflammation 28, 139–145 (2004).

    CAS  PubMed  Google Scholar 

  73. Grassi, F. et al. Inhibition of CD95 apoptotic signalling by interferon-γ in human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis Rheum. 50, 498–506 (2004).

    CAS  PubMed  Google Scholar 

  74. Zhang, J. et al. IL-4 potentiates activated T cell apoptosis via an IL-2-dependent mechanism. J. Immunol. 170, 3495–3503 (2003).

    CAS  PubMed  Google Scholar 

  75. Misra, R. S. et al. Effector CD4+ T cells generate intermediate caspase activity and cleavage of caspase-8 substrates. J. Immunol. 174, 3999–4009 (2005).

    CAS  PubMed  Google Scholar 

  76. Alderson, M. R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178, 2231–2235 (1993). The first study showing that CD95 can co-stimulate resting T cells.

    CAS  PubMed  Google Scholar 

  77. Migone, T. S. et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell co-stimulator. Immunity 16, 479–492 (2002).

    CAS  PubMed  Google Scholar 

  78. Watts, T. H. TNF/TNFR family members in co-stimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    CAS  PubMed  Google Scholar 

  79. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003). The first description of a conditional Casp8 knockout mouse showing that caspase-8 is required for T-cell survival and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lens, S. M. A. et al. The caspase-8 inhibitor c-FLIPL modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol. Cell. Biol. 22, 5419–5433 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, X. et al. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, W. et al. Cellular FLIP long form-transgenic mice manifest a Th2 cytokine bias and enhanced allergic airway inflammation. J. Immunol. 172, 4724–4732 (2004).

    CAS  PubMed  Google Scholar 

  83. Tseveleki, V. et al. Cellular FLIP (long isoform) overexpression in T cells drives Th2 effector responses and promotes immunoregulation in experimental autoimmune encephalomyelitis. J. Immunol. 173, 6619–6626 (2004).

    CAS  PubMed  Google Scholar 

  84. Zhang, N. & He, Y. W. An essential role for c-FLIP in the efficient development of mature T lymphocytes. J. Exp. Med. 202, 395–404 (2005). References 84 and 85 show the requirement of cFLIP for T-cell survival and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chau, H. et al. Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J. Exp. Med. 202, 405–413 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    CAS  PubMed  Google Scholar 

  87. Newton, K., Harris, A. W., Bath, M. L., Smith, K. G. C. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706–718 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Walsh, C. M. et al. A role for FADD in T cell activation and development. Immunity 8, 439–449 (1998).

    CAS  PubMed  Google Scholar 

  89. Beisner, D. R., Chu, I. H., Arechiga, A. F., Hedrick, S. M. & Walsh, C. M. The requirements for Fas-associated death domain signalling in mature T cell activation and survival. J. Immunol. 171, 247–256 (2003).

    CAS  PubMed  Google Scholar 

  90. Hueber, A. O., Zornig, M., Bernard, A. M., Chautan, M. & Evan, G. A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J. Biol. Chem. 275, 10453–10462 (2000).

    CAS  PubMed  Google Scholar 

  91. Su, H. et al. Requirement for caspase-8 in NF-κB activation by antigen receptor. Science 307, 1465–1468 (2005). An important advance showing that the active caspase complex in effector T cells associates with BCL-10 and MALT1 to link to activation of NF-κB.

    CAS  PubMed  Google Scholar 

  92. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).

    CAS  PubMed  Google Scholar 

  93. Kirchhoff, S., Muller, W. W., Li-Weber, M. & Krammer, P. H. Upregulation of c-FLIPshort and reduction of activation-induced cell death in CD28-co-stimulated human T cells. Eur. J. Immunol. 30, 2765–2774 (2000).

    CAS  PubMed  Google Scholar 

  94. Wu, Z. et al. Viral FLIP impairs survival of activated T cells and generation of CD8+ T cell memory. J. Immunol. 172, 6313–6323 (2004).

    CAS  PubMed  Google Scholar 

  95. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nature Rev. Immunol. 4, 348–359 (2004). An excellent review of the CARD–MAGUK protein 1 (CARMA1)–BCL-10–MALT1 complex.

    CAS  Google Scholar 

  96. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Willems, F. et al. Expression of c-FLIPL and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood 95, 3478–3482 (2000).

    CAS  PubMed  Google Scholar 

  98. Hohlbaum, A. M., Gregory, M. S., Ju, S. T. & Marshak-Rothstein, A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 167, 6217–6224 (2001).

    CAS  PubMed  Google Scholar 

  99. Cohen, P. L. & Eisenberg, R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    CAS  PubMed  Google Scholar 

  100. Sneller, M. C. et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341–1348 (1997).

    CAS  PubMed  Google Scholar 

  101. Straus, S. E., Sneller, M., Lenardo, M. J., Puck, J. M. & Strober, W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann. Intern. Med. 130, 591–601 (1999).

    CAS  PubMed  Google Scholar 

  102. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    CAS  PubMed  Google Scholar 

  103. Van Parijs, L., Refaeli, Y., Abbas, A. K. & Baltimore, D. Autoimmunity as a consequence of retrovirus-mediated expression of C-FLIP in lymphocytes. Immunity 11, 763–770 (1999).

    CAS  PubMed  Google Scholar 

  104. Wang, J. et al. Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP. Eur. J. Immunol. 30, 155–163 (2000).

    CAS  PubMed  Google Scholar 

  105. Hennino, A., Berard, M., Casamayor-Palleja, M., Krammer, P. H. & Defrance, T. Regulation of the Fas death pathway by FLICE-inhibitory protein in primary human B cells. J. Immunol. 165, 3023–3030 (2000).

    CAS  PubMed  Google Scholar 

  106. Hennino, A., Berard, M., Krammer, P. H. & Defrance, T. FLICE-inhibitory protein is a key regulator of germinal center B cell apoptosis. J. Exp. Med. 193, 447–458 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Pellegrini, M. et al. FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitor cells. Blood 106, 1581–1589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Desbarats, J. & Newell, M. K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nature Med. 6, 920–923 (2000).

    CAS  PubMed  Google Scholar 

  109. French, L. E. & Tschopp, J. Inhibition of death receptor signalling by FLICE-inhibitory protein as a mechanism for immune escape of tumours. J. Exp. Med. 190, 891–894 (1999). References 109–112 provide a description of the upregulation of cFLIP in certain tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Djerbi, M. et al. The inhibitor of death receptor signalling, FLICE-inhibitory protein defines a new class of tumour progression factors. J. Exp. Med. 190, 1025–1032 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Medema, J. P., de Jong, J., van Hall, T., Melief, C. J. & Offringa, R. Immune escape of tumours in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ugurel, S. et al. Heterogenous susceptibility to CD95-induced apoptosis in melanoma cells correlates with bcl-2 and bcl-x expression and is sensitive to modulation by interferon-γ. Int. J. Cancer 82, 727–736 (1999).

    CAS  PubMed  Google Scholar 

  113. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  114. Conlon, P., Oksenberg, J. R., Zhang, J. & Steinman, L. The immunobiology of multiple sclerosis: an autoimmune disease of the central nervous system. Neurobiol. Dis. 6, 149–166 (1999).

    CAS  PubMed  Google Scholar 

  115. Catrina, A. I., Ulfgren, A. K., Lindblad, S., Grondal, L. & Klareskog, L. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann. Rheum. Dis. 61, 934–936 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bai, S. et al. NF-κB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumour necrosis factor α-mediated apoptosis. Arthritis Rheum. 50, 3844–3855 (2004).

    CAS  PubMed  Google Scholar 

  117. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nature Rev. Genet. 5, 691–701 (2004).

    CAS  PubMed  Google Scholar 

  118. Naito, M. et al. Cellular FLIP inhibits β-catenin ubiquitylation and enhances Wnt signalling. Mol. Cell. Biol. 24, 8418–8427 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health, the Swiss National Science Foundation, the National Cancer Institute of Canada, and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ralph Budd's laboratory

Glossary

Death domain

A protein–protein interaction domain found in many proteins that are involved in signalling and apoptosis.

Death-effector domain

(DED). A domain that is found in certain initiator caspases (for example, mammalian caspase-8) and their adaptor protein (for example, FAS-associated via death domain (FADD)). This domain mediates protein–protein interactions.

Gln-Ala-Cys-X-Gly motif

A cysteine-containing sequence that is found at the enzymatic site of caspases.

His-Gly motif

A crucial histidine sequence at the enzymatic site that is conserved in caspases.

Death-inducing signalling complex

(DISC). This complex forms after death-receptor ligation. In the case of CD95, the DISC rapidly recruits FAS-associated via death domain (FADD) through the mutual death-effector domains of CD95 and FADD, followed by caspase-8 and/or cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) recruitment by death-effector domains.

Jurkat T cell

A human leukaemic T-cell line used to study several aspects of T-cell biology and signalling, in particular signal-transduction events initiated by the T-cell receptor.

Complementation of Rag1−/− blastocysts

A method for generating lymphocytes deficient in molecules whose absence is lethal in mice. Blastocysts from a gene-knockout mouse are fused with those from Rag1−/− mice. Because Rag1−/− cells cannot give rise to lymphocytes (as their antigen-receptor genes cannot rearrange), lymphocytes that develop from these fusions will occur only from the gene-knockout cells.

Bisindolylmaleimide

An inhibitor of protein kinase C and certain G-protein-coupled receptor kinases.

Cycloheximide

An inhibitor of protein synthesis.

Autoimmune lymphoproliferative syndrome

(ALPS). A systemic lupus erythematosus (SLE)-like condition that is seen in patients bearing mutations in CD95.

BH3-only family

Members of the B-cell lymphoma (BCL-2) family that contain only the BCL-2 homology domain 3 (BH3). BH3-only members are pro-apoptotic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budd, R., Yeh, WC. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6, 196–204 (2006). https://doi.org/10.1038/nri1787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing