Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases

Key Points

  • The nuclear factor-κB (NF-κB) signalling pathway regulates immune and inflammatory responses and has been implicated in the pathogenesis of several inflammatory diseases and cancer. NF-κB promotes inflammation and immunity against pathogens by regulating the expression of pro-inflammatory molecules, including cytokines, chemokines, adhesion molecules and proteins with antimicrobial activity. At the same time, NF-κB protects cells from death by inducing the expression of anti-apoptotic and antioxidant proteins.

  • NF-κB inhibition is thought to be anti-inflammatory; however, recent experiments in mouse models have shown that NF-κB inhibition in epithelial cells can result in the spontaneous development of chronic inflammatory conditions. These results indicated that NF-κB acts in non-immune cells to control the maintenance of tissue immune homeostasis.

  • Mice with epidermal keratinocyte-specific inhibition of NF-κB signalling — achieved by ablation of inhibitor of NF-κB (IκB) kinase-β (IKKβ), NEMO (NF-κB essential modulator) or TAK1 (transforming growth factor-β-activated kinase 1) or by transgenic expression of a degradation-resistant form of IκBα — develop severe inflammatory hyperplastic skin lesions that depend on tumour necrosis factor (TNF) signalling.

  • Complete inhibition of canonical NF-κB signalling in intestinal epithelial cells (IECs) by ablation of NEMO or both IKKα and IKKβ resulted in the development of severe chronic colon inflammation in mice. MYD88-dependent signals were required for the development of colitis, which indicates that bacterial recognition by Toll-like receptors (TLRs) could provide the pathogenic signals. Blockade of TNF receptor signalling also inhibits colon inflammation in these mice, which supports a crucial role for TNF in colitis pathogenesis.

  • Mice with liver parenchymal cell (LPC)-specific ablation of NEMO develop spontaneous steatohepatitis and hepatocellular carcinoma. Disease pathogenesis in this model requires FADD (FAS-associated via death domain)-dependent signals and is blocked by feeding of antioxidant compounds, which indicates that death receptor signalling and oxidative stress contribute to disease pathogenesis.

  • The outcome of NF-κB inhibition depends on the level of inhibition achieved. Complete blockade of canonical NF-κB signalling is only achieved by ablation of NEMO or of both IKKα and IKKβ, which have some degree of functional redundancy.

  • NF-κB inhibition in cells that are exposed to environmental insults resulted in spontaneous inflammation, whereas NF-κB inhibition in cells that are not normally exposed to environmental challenges did not cause pathology. These findings indicate that NF-κB signalling might have a special function in epithelia that are constantly exposed to environmental challenges, which is essential for the maintenance of physiological immune homeostasis.

Abstract

The nuclear factor-κB (NF-κB) signalling pathway regulates immune responses and is implicated in the pathogenesis of many inflammatory diseases. Given the well established pro-inflammatory functions of NF-κB, inhibition of this pathway would be expected to have anti-inflammatory effects. However, recent studies in mouse models have led to surprising and provocative results, as NF-κB inhibition in epithelial cells resulted in the spontaneous development of severe chronic inflammatory conditions. These findings indicate that NF-κB signalling acts in non-immune cells to control the maintenance of tissue immune homeostasis. This Review discusses the mechanisms by which NF-κB activity in non-immune cells regulates tissue immune homeostasis and prevents the pathogenesis of inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of the canonical NF-κB signalling pathway.
Figure 2: NF-κB inhibition in epidermal keratinocytes disturbs skin immune homeostasis.
Figure 3: NF-κB inhibition in intestinal epithelial cells disturbs intestinal immune homeostasis and causes chronic colitis.
Figure 4: NF-κB inhibition in liver parenchymal cells causes hepatitis and hepatocellular carcinoma.
Figure 5: Balanced NF-κB signalling is essential for the maintenance of immune homeostasis.

Similar content being viewed by others

References

  1. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh, S. & Hayden, M. S. New regulators of NF-κB in inflammation. Nature Rev. Immunol. 8, 837–848 (2008).

    Article  CAS  Google Scholar 

  3. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Derudder, E. et al. RelB/p50 dimers are differentially regulated by tumor necrosis factor-α and lymphotoxin-β receptor activation: critical roles for p100. J. Biol. Chem. 278, 23278–23284 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Muller, J. R. & Siebenlist, U. Lymphotoxin-β receptor induces sequential activation of distinct NF-κB factors via separate signaling pathways. J. Biol. Chem. 278, 12006–12012 (2003).

    Article  PubMed  Google Scholar 

  12. Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z. W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10, 421–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Q., Estepa, G., Memet, S., Israel, A. & Verma, I. M. Complete lack of NF-κB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 14, 1729–1733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luedde, T. et al. IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc. Natl Acad. Sci. USA 105, 9733–9738 (2008). This study showed that IKKα and IKKβ have redundant and specific functions in protecting the liver from TNF-induced injury and from inflammatory destruction of hepatic bile ducts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lenardo, M. J. & Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, C. Y., Mayo, M. W. & Baldwin, A. S., Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Tsukahara, T. et al. Induction of Bcl-xL expression by human T-cell leukemia virus type 1 Tax through NF-κB in apoptosis-resistant T-cell transfectants with Tax. J. Virol. 73, 7981–7987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell Biol. 21, 5299–5305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S., Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Stehlik, C. et al. Nuclear factor (NF)-κB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor α-induced apoptosis. J. Exp. Med. 188, 211–216 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakon, S. et al. NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 22, 3898–3909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Pasparakis, M., Luedde, T. & Schmidt-Supprian, M. Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13, 861–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Beg, A. A., Sha, W. C., Bronson, R. T. & Baltimore, D. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 9, 2736–2746 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Klement, J. F. et al. IκBα deficiency results in a sustained NF-κB response and severe widespread dermatitis in mice. Mol. Cell Biol. 16, 2341–2349 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rebholz, B. et al. Crosstalk between keratinocytes and adaptive immune cells in an IκBα protein-mediated inflammatory disease of the skin. Immunity 27, 296–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Broide, D. H. et al. Allergen-induced peribronchial fibrosis and mucus production mediated by IκB kinase β-dependent genes in airway epithelium. Proc. Natl Acad. Sci. USA 102, 17723–17728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Acharyya, S. et al. Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J. Clin. Invest. 117, 889–901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Med. 11, 183–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Tschachler, E. Psoriasis: the epidermal component. Clin. Dermatol. 25, 589–595 (2007).

    Article  PubMed  Google Scholar 

  45. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002). This study showed that NF-κB inhibition in epidermal keratinocytes causes TNF-dependent skin inflammation.

    Article  CAS  PubMed  Google Scholar 

  46. Stratis, A. et al. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Invest. 116, 2094–2104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  48. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK–IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Omori, E. et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J. Biol. Chem. 281, 19610–19617 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Omori, E., Morioka, S., Matsumoto, K. & Ninomiya-Tsuji, J. TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J. Biol. Chem. 283, 26161–26168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res. 59, 3299–3303 (1999).

    CAS  PubMed  Google Scholar 

  53. Lind, M. H. et al. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-κB inhibition. Proc. Natl Acad. Sci. USA 101, 4972–4977 (2004). References 52 and 53 showed that NF-κB inhibition in epidermal keratinocytes causes chronic skin lesions and squamous cell carcinomas that depend on TNF signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gugasyan, R. et al. The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol. Cell Biol. 24, 5733–5745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000). This study provided the first example of a genetic disease caused by mutations in NEMO that affect NF-κB signalling.

    Article  CAS  PubMed  Google Scholar 

  57. Berlin, A. L., Paller, A. S. & Chan, L. S. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J. Am. Acad. Dermatol. 47, 169–187 (2002).

    Article  PubMed  Google Scholar 

  58. Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Stratis, A. et al. Localized inflammatory skin disease following inducible ablation of IκB kinase 2 in murine epidermis. J. Invest. Dermatol. 126, 614–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ulvmar, M. H., Sur, I., Memet, S. & Toftgard, R. Timed NF-κB inhibition in skin reveals dual independent effects on development of HED/EDA and chronic inflammation. J. Invest. Dermatol. 11 Jun 2009 (doi:10.1038/jid.2009.126).

    Article  CAS  Google Scholar 

  61. Sur, I., Ulvmar, M. & Toftgard, R. The two-faced NF-κB in the skin. Int. Rev. Immunol. 27, 205–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Boutin, A. T. et al. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133, 223–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103, 745–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Mossner, R., Schon, M. P. & Reich, K. Tumor necrosis factor antagonists in the therapy of psoriasis. Clin. Dermatol. 26, 486–502 (2008).

    Article  PubMed  Google Scholar 

  68. Strober, W., Fuss, I. & Mannon, P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest. 117, 514–521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ellis, R. D. et al. Activation of nuclear factor κB in Crohn's disease. Inflamm. Res. 47, 440–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Schreiber, S., Nikolaus, S. & Hampe, J. Activation of nuclear factor κB in inflammatory bowel disease. Gut 42, 477–484 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neurath, M. F., Pettersson, S., Meyer zum Buschenfelde, K. H. & Strober, W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nature Med. 2, 998–1004 (1996). This study provided the first in vivo experimental evidence for an important function of NF-κB in colitis.

    Article  CAS  PubMed  Google Scholar 

  72. Dave, S. H. et al. Amelioration of chronic murine colitis by peptide-mediated transduction of the IκB kinase inhibitor NEMO binding domain peptide. J. Immunol. 179, 7852–7859 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Shibata, W. et al. Cutting edge: The IκB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J. Immunol. 179, 2681–2685 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007). This study showed that NF-κB inhibition in intestinal epithelial cells disrupts intestinal immune homeostasis and causes severe chronic colitis in mice.

    Article  CAS  PubMed  Google Scholar 

  75. Wehkamp, J., Fellermann, K., Herrlinger, K. R., Bevins, C. L. & Stange, E. F. Mechanisms of disease: defensins in gastrointestinal diseases. Nature Clin. Pract. Gastroenterol. Hepatol. 2, 406–415 (2005).

    Article  CAS  Google Scholar 

  76. Fellermann, K. et al. A chromosome 8 gene-cluster polymorphism with low human β-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 79, 439–448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fish, J. D., Duerst, R. E., Gelfand, E. W., Orange, J. S. & Bunin, N. Challenges in the use of allogeneic hematopoietic SCT for ectodermal dysplasia with immune deficiency. Bone Marrow Transplant. 43, 217–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Pai, S. Y. et al. Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-κB essential modulator deficiency. J. Allergy Clin. Immunol. 122, 1113–1118 e1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Vijay-Kumar, M. et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117, 3909–3921 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Araki, A. et al. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J. Gastroenterol. 40, 16–23 (2005). References 85 and 86 showed that recognition of commensal bacteria by TLRs protects the gut from injury in the DSS-induced colitis model.

    Article  CAS  PubMed  Google Scholar 

  87. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132, 1359–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Cario, E. & Podolsky, D. K. Intestinal epithelial TOLLerance versus inTOLLerance of commensals. Mol. Immunol. 42, 887–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Leaphart, C. L. et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J. Immunol. 179, 4808–4820 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Sandborn, W. J. & Hanauer, S. B. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm. Bowel Dis. 5, 119–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Atreya, R. & Neurath, M. F. New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol. 1, 175–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kajino-Sakamoto, R. et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181, 1143–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Kim, J. Y., Kajino-Sakamoto, R., Omori, E., Jobin, C. & Ninomiya-Tsuji, J. Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis. PLoS ONE 4, e4561 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Frank, D. N. & Pace, N. R. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24, 4–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Manson, J. M., Rauch, M. & Gilmore, M. S. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635, 15–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Steinbrecher, K. A., Harmel-Laws, E., Sitcheran, R. & Baldwin, A. S. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. J. Immunol. 180, 2588–2599 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Eckmann, L. et al. Opposing functions of IKKβ during acute and chronic intestinal inflammation. Proc. Natl Acad. Sci. USA 105, 15058–15063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Egan, L. J. et al. IκB-kinaseβ-dependent NF-κB activation provides radioprotection to the intestinal epithelium. Proc. Natl Acad. Sci. USA 101, 2452–2457 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, L. W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia–reperfusion. Nature Med. 9, 575–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007). This study showed that NF-κB inhibition by IKKβ ablation in intestinal epithelial cells prevents expression of TSLP, resulting in impaired protective T H 2 cell responses and exacerbated pathogenic T H 1 cell-mediated inflammation after infection of mice with the intestinal parasite Trichuris muris.

    Article  CAS  PubMed  Google Scholar 

  103. Lee, H. C. & Ziegler, S. F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl Acad. Sci. USA 104, 914–919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, Y. J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Doi, T. S. et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc. Natl Acad. Sci. USA 96, 2994–2999 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alcamo, E. et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J. Immunol. 167, 1592–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007). This study showed that NF-κB inhibition by ablation of NEMO in liver parenchymal cells resulted in the spontaneous development of chronic steatohepatitis and hepatocellular carcinoma.

    Article  CAS  PubMed  Google Scholar 

  108. Maeda, S. et al. IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 19, 725–737 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Luedde, T. et al. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J. Clin. Invest. 115, 849–859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Geisler, F., Algül, H., Paxian, S. & Schmid, R. M. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 132, 2489–2503 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Chaisson, M. L., Brooling, J. T., Ladiges, W., Tsai, S. & Fausto, N. Hepatocyte-specific inhibition of NF-κB leads to apoptosis after TNF treatment, but not after partial hepatectomy. J. Clin. Invest. 110, 193–202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunol. 10, 348–355 (2009).

    Article  CAS  Google Scholar 

  113. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Herrmann, O. et al. IKK mediates ischemia-induced neuronal death. Nature Med. 11, 1322–1329 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. van Loo, G. et al. Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nature Immunol. 7, 954–961 (2006).

    Article  CAS  Google Scholar 

  117. Mourkioti, F. et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J. Clin. Invest. 116, 2945–2954 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rohl, M. et al. Conditional disruption of IκB kinase 2 fails to prevent obesity-induced insulin resistance. J. Clin. Invest. 113, 474–481 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Baumann, B. et al. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo. J. Clin. Invest. 117, 1502–1513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Norlin, S., Ahlgren, U. & Edlund, H. Nuclear factor-κB activity in β-cells is required for glucose-stimulated insulin secretion. Diabetes 54, 125–132 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to all the present and past members of my laboratory for making this work possible. Work in my laboratory is supported by funding from the University of Cologne (Germany), the Human Frontier Science Program, the Deutsche Forschungsgemeinschaft and the European Union.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

incontinentia pigmenti

FURTHER INFORMATION

Manolis Pasparakis' laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasparakis, M. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases. Nat Rev Immunol 9, 778–788 (2009). https://doi.org/10.1038/nri2655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing