Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of brown and beige fat development

Key Points

  • Brown and beige adipocytes are thermogenic fat cells that are highly specialized in dissipating chemical energy in the form of heat. There is great hope that these cells can be targeted therapeutically to combat obesity, insulin resistance and type 2 diabetes.

  • Brown adipocytes develop in distinctive developmental depots of brown adipose tissue (BAT) and have a relatively stable thermogenic phenotype. These cells are poised for heat production in response to various stimuli, including catecholamines that are secreted by sympathetic nerves in BAT on cold exposure.

  • Beige adipocytes are uncoupling protein 1 (UCP1)-expressing and thermogenically competent adipocytes that form in white adipose tissue (WAT) depots in response to various stimuli, including cold exposure or β3-adrenergic agonists. The beige phenotype of WAT is flexible, and the maintenance of beige cells requires ongoing stimulation.

  • Beige adipocytes can arise from adipogenic precursor cells in WAT through de novo differentiation or through the direct conversion of mature unilocular white-like adipocytes.

  • Brown and beige fat cells express certain transcription factors, such as early B-cell factor 2 (EBF2), PR domain zinc finger protein 16 (PRDM16), interferon regulatory factor 4 (IRF4) and zinc finger protein 516 (ZFP516), that cooperate with the general adipogenic factors peroxisome proliferator-activated receptor-γ (PPARγ) and the CCAAT/enhancer-binding proteins (C/EBPs) to drive brown adipocyte differentiation and thermogenic gene programming. ZFP423 acts in white adipocytes to suppress EBF2 and maintain white fat fate.

  • Type 2 cytokine signalling and alternative macrophage activation play a crucial part in regulating both brown fat thermogenesis and beige fat biogenesis. Alternatively activated macrophages secrete catecholamines in WAT to promote browning.

Abstract

Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli — notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brown, white and beige adipocytes.
Figure 2: Development of brown adipocytes.
Figure 3: Development of beige adipocytes.
Figure 4: Crosstalk between brown and/or beige adipocytes and other adipose-resident cells.

Similar content being viewed by others

References

  1. Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  3. Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discov. 9, 107–115 (2010).

    CAS  PubMed  Google Scholar 

  4. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  5. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  8. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

  9. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    CAS  PubMed  Google Scholar 

  11. Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012). In this work, the authors demonstrate that beige adipocytes are a distinctive cell type that has a different molecular signature from classic brown fat or white fat cells. Importantly, human BAT depots are identified as having a beige rather than a brown fat profile.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997). Here, the authors show that UCP1 is genetically required for cold-induced adaptive thermogenesis and cold-tolerance in mice. The Ucp1 -null mice generated in this work have been widely studied in many laboratories around the world.

    CAS  PubMed  Google Scholar 

  14. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    CAS  PubMed  Google Scholar 

  15. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    CAS  PubMed  Google Scholar 

  16. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    CAS  PubMed  Google Scholar 

  17. Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573 (2001).

    CAS  PubMed  Google Scholar 

  18. Dempersmier, J. et al. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol. Cell 57, 235–246 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    CAS  PubMed  Google Scholar 

  22. Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS  PubMed  Google Scholar 

  23. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    CAS  PubMed  Google Scholar 

  24. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015). This study reports that human BAT thermogenesis can be pharmacologically stimulated by a β3-andrenergic agonist and that this increases energy expenditure. This is an important proof-of- concept that BAT-targeted therapies could be a promising approach for reducing metabolic disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Inagaki, T., Sakai, J. & Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 17, 480–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Klaus, S., Ely, M., Encke, D. & Heldmaier, G. Functional assessment of white and brown adipocyte development and energy metabolism in cell culture. Dissociation of terminal differentiation and thermogenesis in brown adipocytes. J. Cell Sci. 108, 3171–3180 (1995).

    CAS  PubMed  Google Scholar 

  29. Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Petrovic, N., Shabalina, I. G., Timmons, J. A., Cannon, B. & Nedergaard, J. Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist. Am. J. Physiol. Endocrinol. Metab. 295, E287–E296 (2008).

    CAS  PubMed  Google Scholar 

  31. Bartesaghi, S. et al. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes. Mol. Endocrinol. 29, 130–139 (2015).

    PubMed  Google Scholar 

  32. Elabd, C. et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27, 2753–2760 (2009).

    CAS  PubMed  Google Scholar 

  33. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  34. Li, Y., Bolze, F., Fromme, T. & Klingenspor, M. Intrinsic differences in BRITE adipogenesis of primary adipocytes from two different mouse strains. Biochim. Biophys. Acta 1841, 1345–1352 (2014).

    CAS  PubMed  Google Scholar 

  35. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998). An important study showing that there is large mouse-strain-dependent variation in the induction of beige adipocytes with relatively little effect on classical BAT. In addition, beige fat levels among inbred and recombinant strains were highly correlated with the ability of β3-andrenergic agonists to decrease body weight.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015). This study identifies a novel mechanism for UCP1-independent thermogenesis in beige adipocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, W. et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl Acad. Sci. USA 111, 14466–14471 (2014). The helix–loop–helix transcription factor EBF2 is identified as a specific marker gene and protein, and a functional regulator of brown and beige fat precursor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    CAS  PubMed  Google Scholar 

  39. Atit, R. et al. β-Catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296, 164–176 (2006).

    CAS  PubMed  Google Scholar 

  40. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). This study shows that brown adipocytes and muscle have a common or similar developmental origin. PRDM16 was identified as a transcriptional factor that drives brown fat differentiation and suppresses muscle differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lepper, C. & Fan, C. M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424–436 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanchez-Gurmaches, J. et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348–362 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walden, T. B., Timmons, J. A., Keller, P., Nedergaard, J. & Cannon, B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 218, 444–449 (2009).

    CAS  PubMed  Google Scholar 

  44. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Forner, F. et al. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab. 10, 324–335 (2009).

    CAS  PubMed  Google Scholar 

  46. Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, J. H. et al. A multifunctional protein, EWS, is essential for early brown fat lineage determination. Dev. Cell 26, 393–404 (2013).

    CAS  PubMed  Google Scholar 

  48. Trajkovski, M., Ahmed, K., Esau, C. C. & Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14, 1330–1335 (2012).

    CAS  PubMed  Google Scholar 

  49. Yin, H. et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 17, 210–224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, L. et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 13, 958–965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Harms, M. J. et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 19, 593–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nabeshima, Y. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532–535 (1993).

    CAS  PubMed  Google Scholar 

  54. Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shao, M. et al. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23, 1167–1184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bukowiecki, L., Collet, A. J., Follea, N., Guay, G. & Jahjah, L. Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am. J. Physiol. 242, E353–E359 (1982).

    CAS  PubMed  Google Scholar 

  57. Bronnikov, G., Houstek, J. & Nedergaard, J. β-Adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via β1 but not via β3 adrenoceptors. J. Biol. Chem. 267, 2006–2013 (1992).

    CAS  PubMed  Google Scholar 

  58. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    CAS  PubMed  Google Scholar 

  59. Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    CAS  PubMed  Google Scholar 

  60. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    CAS  PubMed  Google Scholar 

  61. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    CAS  PubMed  Google Scholar 

  62. Ussar, S. et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl Med. 6, 247ra103 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Stine, R. R. et al. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol. Metab. 5, 57–65 (2016).

    CAS  PubMed  Google Scholar 

  64. Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berry, D. C., Jiang, Y. & Graff, J. M. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat. Commun. 7, 10184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang, L. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126, 1067–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang, Y., Berry, D. C., Tang, W. & Graff, J. M. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 9, 1007–1022 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    CAS  PubMed  Google Scholar 

  69. McDonald, M. E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160, 105–118 (2015). This study reports that BMP7 promotes beige adipogenesis and suppresses smooth muscle programming in mesenchymal stem cells by regulating RHO-associated protein kinase (ROCK) signalling and reducing the activity of MRTFA, a transcription factor. Genetic loss of Mrtfa in mice enhances beige adipocyte differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghorbani, M. & Himms-Hagen, J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes Relat. Metab. Disord. 21, 465–475 (1997).

    CAS  PubMed  Google Scholar 

  72. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    CAS  PubMed  Google Scholar 

  73. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010).

    CAS  PubMed  Google Scholar 

  75. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013). This study reports the development of a genetic system called AdipoChaser in mice to examine the fate of mature adipocytes in vivo . A key result in this paper is that most cold-induced beige adipocytes in inguinal WAT do not arise from pre-existing mature fat cells in the tissue. This suggests that de novo differentiation of resident precursor cells is the main mechanism of beige fat formation.

    PubMed  PubMed Central  Google Scholar 

  76. Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013). This study reports that beige adipocytes lose Ucp1 expression and become lipid-replete white adipocyte-like cells after warm adaptation. These cells can be reactivated to regain their multilocular beige phenotype and UCP1 expression after another round of cold stimulation, demonstrating the phenotypic plasticity of beige adipocytes.

    CAS  PubMed  Google Scholar 

  77. Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  PubMed  Google Scholar 

  79. Uldry, M. et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333–341 (2006).

    CAS  PubMed  Google Scholar 

  80. Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kleiner, S. et al. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc. Natl Acad. Sci. USA 109, 9635–9640 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartness, T. J., Shrestha, Y. B., Vaughan, C. H., Schwartz, G. J. & Song, C. K. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010).

    CAS  PubMed  Google Scholar 

  84. Morrison, S. F., Madden, C. J. & Tupone, D. Central control of brown adipose tissue thermogenesis. Front. Endocrinol. (Lausanne) 3, 00005 (2012).

    CAS  Google Scholar 

  85. Ryu, V., Garretson, J. T., Liu, Y., Vaughan, C. H. & Bartness, T. J. Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vaughan, C. H. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rothwell, N. J. & Stock, M. J. Effects of denervating brown adipose tissue on the responses to cold, hyperphagia and noradrenaline treatment in the rat. J. Physiol. 355, 457–463 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Silva, J. E. & Larsen, P. R. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305, 712–713 (1983).

    CAS  PubMed  Google Scholar 

  89. Takahashi, A., Shimazu, T. & Maruyama, Y. Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue. Jpn J. Physiol. 42, 653–664 (1992).

    CAS  PubMed  Google Scholar 

  90. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    CAS  PubMed  Google Scholar 

  91. Nisoli, E., Tonello, C., Benarese, M., Liberini, P. & Carruba, M. O. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 137, 495–503 (1996).

    CAS  PubMed  Google Scholar 

  92. Sornelli, F., Fiore, M., Chaldakov, G. N. & Aloe, L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen. Physiol. Biophys. 28, 179–183 (2009).

    PubMed  Google Scholar 

  93. Rosell, M. et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab. 306, E945–E964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011). These authors discover a novel and crucial role for macrophage-derived catecholamines in mediating BAT thermogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Asano, A., Kimura, K. & Saito, M. Cold-induced mRNA expression of angiogenic factors in rat brown adipose tissue. J. Vet. Med. Sci. 61, 403–409 (1999).

    CAS  PubMed  Google Scholar 

  96. Asano, A., Morimatsu, M., Nikami, H., Yoshida, T. & Saito, M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochem. J. 328, 179–183 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fredriksson, J. M., Nikami, H. & Nedergaard, J. Cold-induced expression of the VEGF gene in brown adipose tissue is independent of thermogenic oxygen consumption. FEBS Lett. 579, 5680–5684 (2005).

    CAS  PubMed  Google Scholar 

  98. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    CAS  PubMed  Google Scholar 

  99. Bagchi, M. et al. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J. 27, 3257–3271 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Elias, I. et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61, 1801–1813 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun, K. et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol. Metab. 3, 474–483 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sung, H. K. et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 17, 61–72 (2013).

    CAS  PubMed  Google Scholar 

  103. Shimizu, I. et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124, 2099–2112 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fitzgibbons, T. P. et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol. 301, H1425–H1437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Takaoka, M. et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb. Vasc. Biol. 30, 1576–1582 (2010).

    CAS  PubMed  Google Scholar 

  106. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    CAS  PubMed  Google Scholar 

  108. Cawthorn, W. P., Heyd, F., Hegyi, K. & Sethi, J. K. Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ. 14, 1361–1373 (2007).

    CAS  PubMed  Google Scholar 

  109. Vidal, C. et al. Interferon γ inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells 30, 1042–1048 (2012).

    CAS  PubMed  Google Scholar 

  110. Nisoli, E. et al. Tumor necrosis factor α mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity. Proc. Natl Acad. Sci. USA 97, 8033–8038 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lumeng, C. N., DelProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Takatsu, K. & Nakajima, H. IL-5 and eosinophilia. Curr. Opin. Immunol. 20, 288–294 (2008).

    CAS  PubMed  Google Scholar 

  117. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    CAS  PubMed  Google Scholar 

  118. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Medrikova, D. et al. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS ONE 10, e0118534 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Hankir, M. K. et al. Differential effects of Roux-en-Y gastric bypass surgery on brown and beige adipose tissue thermogenesis. Metabolism 64, 1240–1249 (2015).

    CAS  PubMed  Google Scholar 

  121. Neinast, M. D. et al. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning. Mol. Metab. 4, 427–436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Nicholls, D. G. The physiological regulation of uncoupling proteins. Biochim. Biophys. Acta 1757, 459–466 (2006).

    CAS  PubMed  Google Scholar 

  123. Ricquier, D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front. Endocrinol. (Lausanne) 2, 85 (2011).

    CAS  Google Scholar 

  124. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rahman, S. et al. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154, 2687–2701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    CAS  PubMed  Google Scholar 

  128. Sul, H. S. Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. Mol. Endocrinol. 23, 1717–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chau, Y. Y. et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 16, 367–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an American Heart Association postdoctoral fellowship to W.W. and US National Institute of Diabetes and Digestive and Kidney Diseases grant 5R01DK10300802 to P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Seale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Summary of lineage tracing studies. (PDF 2865 kb)

PowerPoint slides

Glossary

Sympathetic nervous system

(SNS). Regulates bodily function (unconsciously) by connecting the brain to internal organs through nerves in the spinal column. Presynaptic neurons in the spinal cord secrete acetylcholine to activate postsynaptic neurons that innervate target organs and tissues. The postsynaptic neurons secrete noradrenaline, which activates β-adrenergic receptors on various cell types, including adipocytes.

Noradrenaline

A neurotransmitter in the catecholamine family that is secreted by sympathetic neurons to stimulate various responses, including adaptive thermogenesis in brown and beige fat.

Adrenergic receptors

A class of G protein-coupled cell surface receptors that are activated by catecholamines.

Adaptive thermogenesis

A facultative process by which animals produce heat only in response to stimuli, such as cold exposure or high-fat diet. Muscle shivering and uncoupled respiration in brown and beige fat are major mechanisms.

Thiazolidinediones

A class of synthetic high-affinity agonists for the nuclear hormone receptor peroxisome proliferator-activated receptor-γ (PPARγ). Thiazolidinediones improve insulin action in mice and humans through activation of PPARγ in adipocytes and other cell types.

Homeobox gene

A family of genes that encode proteins that are characterized by a DNA sequence called the homeobox. Members of this gene family have crucial roles in patterning and morphogenesis.

Dermomyotome

The mesodermal domain of the somite that is fated to differentiate into the skeletal muscle (myotome) and dermis (dermatome).

Helix–loop–helix transcription factor

A transcription factor family characterized by a structural motif. These factors are known to have important roles in various developmental processes.

Mural cells

Cells that are closely associated with the vasculature, such as vascular smooth muscle cells or pericytes.

Catecholamine

A class of naturally occurring chemicals, including noradrenaline and adrenaline, that act as neurotransmitters.

M1-like macrophages

Macrophage populations that have a pro-inflammatory profile and are characterized by secretion of interferon-γ, tumour necrosis factor and interleukin-1.

M2-like macrophages

Alternatively activated macrophage populations that are characterized by secretion of arginase and interleukin-10, and that have important roles in tissue repair and homeostasis.

Eosinophils

Specialized white blood cells that are characterized by granules that contain histamine and other chemical mediators. They play an important part in anti-parasite immunity.

Lipolysis

Hydrolysis of lipids into their component free fatty acids and glycerol.

Met-encephalin

A type of encephalin, which is a five-amino-acid peptide that is classically known to regulate nociception by binding to opioid receptors. Met-encephalin contains methionine, whereas Leu-encephalin contains leucine.

Adipokine

Cytokine or other protein secreted by adipocytes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Seale, P. Control of brown and beige fat development. Nat Rev Mol Cell Biol 17, 691–702 (2016). https://doi.org/10.1038/nrm.2016.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing