Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Proteome chips for whole-organism assays

Abstract

Over the past 5 years, protein-chip technology has emerged as a useful tool for the study of many kinds of protein interactions and biochemical activities. The construction of Saccharomyces cerevisiae whole-proteome arrays has enabled further studies of such interactions in a proteome-wide context. Here, we explore some of the recent advances that have been made at the '-omic' level using protein microarrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of proteome-chip construction and assay.
Figure 2: Examination of the yeast glycome.
Figure 3: Identification of DNA-binding sites of novel DNA-binding proteins.
Figure 4: Enriched modules of regulation discovered from phosphorylation data.

Similar content being viewed by others

References

  1. Ekins, R. P. Multi-analyte immunoassay. J. Pharm. Biomed. Anal. 7, 155–168 (1989).

    Article  CAS  Google Scholar 

  2. Ekins, R., Chu, F. & Biggart, E. Multispot, multianalyte, immunoassay. Ann. Biol. Clin. (Paris) 48, 655–666 (1990).

    CAS  Google Scholar 

  3. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  4. Churchill, G. A. Fundamentals of experimental design for cDNA microarrays. Nature Genet. 32 (Suppl.), 490–495 (2002).

    Article  CAS  Google Scholar 

  5. Holloway, A. J., van Laar, R. K., Tothill, R. W. & Bowtell, D. D. Options available — from start to finish — for obtaining data from DNA microarrays II. Nature Genet. 32 (Suppl.), 481–489 (2002).

    Article  CAS  Google Scholar 

  6. Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32 (Suppl.), 496–501 (2002).

    Article  CAS  Google Scholar 

  7. Slonim, D. K. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32 (Suppl.), 502–508 (2002).

    Article  CAS  Google Scholar 

  8. Chuaqui, R. F. et al. Post-analysis follow-up and validation of microarray experiments. Nature Genet. 32 (Suppl.), 509–514 (2002).

    Article  CAS  Google Scholar 

  9. Duyk, G. M. Sharper tools and simpler methods. Nature Genet. 32 (Suppl.), 465–468 (2002).

    Article  CAS  Google Scholar 

  10. Stoeckert, C. J. Jr, Causton, H. C. & Ball, C. A. Microarray databases: standards and ontologies. Nature Genet. 32 (Suppl.), 469–473 (2002).

    Article  CAS  Google Scholar 

  11. MacBeath, G. Protein microarrays and proteomics. Nature Genet. 32 (Suppl.), 526–532 (2002).

    Article  CAS  Google Scholar 

  12. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    Article  CAS  Google Scholar 

  13. Stoll, D., Templin, M. F., Bachmann, J. & Joos, T. O. Protein microarrays: applications and future challenges. Curr. Opin. Drug Discov. Devel. 8, 239–252 (2005).

    CAS  PubMed  Google Scholar 

  14. Predki, P. F. Functional protein microarrays: ripe for discovery. Curr. Opin. Chem. Biol. 8, 8–13 (2004).

    Article  CAS  Google Scholar 

  15. LaBaer, J. & Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 14–19 (2005).

    Article  CAS  Google Scholar 

  16. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nature Genet. 34, 35–41 (2003).

    Article  Google Scholar 

  17. Rual, J. F. et al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14, 2128–2135 (2004).

    Article  CAS  Google Scholar 

  18. Scheich, C., Sievert, V. & Bussow, K. An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. BMC Biotechnol. 3, 12 (2003).

    Article  Google Scholar 

  19. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  Google Scholar 

  20. Albala, J. S. et al. From genes to proteins: high-throughput expression and purification of the human proteome. J. Cell. Biochem. 80, 187–191 (2000).

    Article  CAS  Google Scholar 

  21. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  22. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–547 (1996).

    Article  Google Scholar 

  23. Gelperin, D. M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    Article  CAS  Google Scholar 

  24. Angenendt, P. Progress in protein and antibody microarray technology. Drug Discov. Today 10, 503–511 (2005).

    Article  CAS  Google Scholar 

  25. Delehanty, J. B. & Ligler, F. S. Method for printing functional protein microarrays. BioTechniques 34, 380–385 (2003).

    Article  CAS  Google Scholar 

  26. Pellois, J. P. et al. Individually addressable parallel peptide synthesis on microchips. Nature Biotechnol. 20, 922–926 (2002).

    Article  CAS  Google Scholar 

  27. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  28. Newman, J. R. & Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097–2101 (2003).

    Article  CAS  Google Scholar 

  29. Espejo, A., Cote, J., Bednarek, A., Richard, S. & Bedford, M. T. A protein–domain microarray identifies novel protein–protein interactions. Biochem. J. 367, 697–702 (2002).

    Article  CAS  Google Scholar 

  30. Kersten, B. et al. Generation of Arabidopsis protein chips for antibody and serum screening. Plant Mol. Biol. 52, 999–1010 (2003).

    Article  CAS  Google Scholar 

  31. Lueking, A. et al. A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell. Proteomics 2, 1342–1349 (2003).

    Article  CAS  Google Scholar 

  32. Michaud, G. A. et al. Analyzing antibody specificity with whole proteome microarrays. Nature Biotechnol. 21, 1509–1512 (2003).

    Article  CAS  Google Scholar 

  33. Satoh, J. I., Nanri, Y. & Yamamura, T. Rapid identification of 14–3–3-binding proteins by protein microarray analysis. J. Neurosci. Methods 152, 278–288 (2005).

    Article  Google Scholar 

  34. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    Article  CAS  Google Scholar 

  35. Csank, C. et al. Three yeast proteome databases: YPD, PombePD, and CalPD (MycoPathPD). Methods Enzymol. 350, 347–373 (2002).

    Article  CAS  Google Scholar 

  36. Hall, D. A. et al. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).

    Article  CAS  Google Scholar 

  37. Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  38. Feilner, T. et al. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol. Cell. Proteomics 4, 1558–1568 (2005).

    Article  CAS  Google Scholar 

  39. The Arabidopsis Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  40. Widmann, C., Gibson, S., Jarpe, M. B. & Johnson, G. L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180 (1999).

    Article  CAS  Google Scholar 

  41. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  Google Scholar 

  42. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  43. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  44. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  45. Xenarios, I. et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002).

    Article  CAS  Google Scholar 

  46. Bader, G. D. & Hogue, C. W. BIND — a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16, 465–477 (2000).

    Article  CAS  Google Scholar 

  47. Horak, C. E. et al. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev. 16, 3017–3033 (2002).

    Article  CAS  Google Scholar 

  48. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  49. Mewes, H. W., Albermann, K., Heumann, K., Liebl, S. & Pfeiffer, F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res. 25, 28–30 (1997).

    Article  CAS  Google Scholar 

  50. Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002).

    Article  CAS  Google Scholar 

  51. Jones, R. B., Gordus, A., Krall, J. A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  Google Scholar 

  52. Kuno, A. et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2, 851–856 (2005).

    Article  CAS  Google Scholar 

  53. Jin, F. et al. A pooling-deconvolution strategy for biological network elucidation. Nature Methods 3, 183–189 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Dr. Snyder is a consultant with Invitrogen.

Related links

Related links

FURTHER INFORMATION

Michael Snyder's homepage

Berkeley Drosophila Genome Project, Drosophila Gene Collection

Mammalian Gene Collection

Saccharomyces cerevisiae Phosphorylome Database

Open Biosystems Human ORF Collection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, L., Snyder, M. Proteome chips for whole-organism assays. Nat Rev Mol Cell Biol 7, 617–622 (2006). https://doi.org/10.1038/nrm1941

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing