Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do we underestimate the importance of water in cell biology?

Abstract

Liquid water is a highly versatile material. Although it is formed from the tiniest of molecules, it can shape and control biomolecules. The hydrogen-bonding properties of water are crucial to this versatility, as they allow water to execute an intricate three-dimensional 'ballet', exchanging partners while retaining complex order and enduring effects. Water can generate small active clusters and macroscopic assemblies, which can both transmit information on different scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dependence of water clustering on hydrogen-bond density.
Figure 2: The importance of water in protein folding.
Figure 3: The importance of water in protein structure.
Figure 4: Water in the transfer of protons and electrons.

Similar content being viewed by others

References

  1. Raschke, T. M. Water structure and interactions with protein surfaces. Curr. Opin. Struct. Biol. 16, 152–159 (2006).

    Article  CAS  Google Scholar 

  2. Chaplin, M. F. Water: its importance to life. Biochem. Mol. Biol. Educ. 29, 54–59 (2001).

    CAS  Google Scholar 

  3. Albiser, G., Lamiri, A. & Premilat, S. The A–B transition: temperature and base composition effects on hydration of DNA. Int. J. Biol. Macromol. 28, 199–203 (2001).

    Article  CAS  Google Scholar 

  4. Fuxreiter, M., Mezei, M., Simon, I. & Osman, R. Interfacial water as a “hydration fingerprint” in the noncognate complex of BamHI. Biophys. J. 89, 903–911 (2005).

    Article  CAS  Google Scholar 

  5. Giovambattista, N., Mazza, M. G., Buldyrev, S. V., Starr, F. W. & Stanley, H. E. Dynamic heterogeneities in supercooled water. J. Phys. Chem. B 108, 6655–6662 (2004).

    Article  CAS  Google Scholar 

  6. Brodsky, A. Is there predictive value in water computer simulations? Chem. Phys. Lett. 261, 563–568 (1996).

    Article  CAS  Google Scholar 

  7. Billeter, M. Hydration water molecules seen by NMR and by X-ray crystallography. Prog. NMR Spectrosc. 27, 635–645 (1995).

    Article  CAS  Google Scholar 

  8. Soper, A. K. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258, 121–137 (2000).

    Article  CAS  Google Scholar 

  9. Halle, B. Protein hydration dynamics in solution: a critical survey. Phil. Trans. R. Soc. Lond. B 359, 1207–1224 (2004).

    Article  CAS  Google Scholar 

  10. Cheung, M. S., Garcia, A. E. & Onuchic, J. N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl Acad. Sci. USA 99, 685–690 (2002).

    Article  CAS  Google Scholar 

  11. Papoian, G. A., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z. & Wolynes, P. G. Water in protein structure prediction. Proc. Natl Acad. Sci. USA 101, 3352–3357 (2004).

    Article  CAS  Google Scholar 

  12. Bandyopadhyay, S., Chakraborty, S. & Bagchi, B. Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J. Am. Chem. Soc. 127, 16660–16667 (2005).

    Article  CAS  Google Scholar 

  13. Nakasako, M. Water–protein interactions from high-resolution protein crystallography. Phil. Trans. R. Soc. Lond. B 359, 1191–1206 (2004).

    Article  CAS  Google Scholar 

  14. Fernández, A. & Scheraga, H. A. Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc. Natl Acad. Sci. USA 100, 113–118 (2003).

    Article  Google Scholar 

  15. Dunn, R. V. & Daniel, R. M. The use of gas-phase substrates to study enzyme catalysis at low hydration. Phil. Trans. R. Soc. Lond. B 359, 1309–1320 (2004).

    Article  CAS  Google Scholar 

  16. Smolin, N., Oleinikova, A., Brovchenko, I., Geiger, A. & Winter, R. Properties of spanning water networks at protein surfaces. J. Phys. Chem. B 109, 10995–11005 (2005).

    Article  CAS  Google Scholar 

  17. Eisenmesser, E. Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature. 438, 36–37 (2005).

    Article  Google Scholar 

  18. Brovchenko, I. et al. Thermal breaking of spanning water networks in the hydration shell of proteins. J. Chem. Phys. 123, 224905 (2005).

    Article  CAS  Google Scholar 

  19. Ben-Naim, A. Molecular recognition — viewed through the eyes of the solvent. Biophys. Chem. 101–102, 309–319 (2002).

    Article  Google Scholar 

  20. Li, Z. & Lazaridis, T. The effect of water displacement on binding thermodynamics: concanavalin A. J. Phys. Chem. B 109, 662–670 (2005).

    Article  CAS  Google Scholar 

  21. Cukierman, S. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta Bioenergetics 29 Dec 2005 (doi:10.1016/j.bbabio.2005.12.001).

  22. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002).

    Article  CAS  Google Scholar 

  23. Lin, J., Balabin, I. A. & Beratan, D. N. The nature of aqueous tunneling pathways between electron-transfer proteins. Science 310, 1311–1313 (2005).

    Article  CAS  Google Scholar 

  24. Makarov, V., Pettitt, B. M. & Feig, M. Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment. Acc. Chem. Res. 35, 376–384 (2002).

    Article  CAS  Google Scholar 

  25. Arai, S. et al. Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements. Nucl. Acids Res. 33, 3017–3024 (2005).

    Article  CAS  Google Scholar 

  26. Belton, P. S. Nuclear magnetic resonance studies of the hydration of proteins and DNA. Cell. Mol. Life Sci. 57, 993–998 (2000).

    Article  CAS  Google Scholar 

  27. Dastidar, S. G. & Mukhopadhyay, C. Structure, dynamics, and energetics of water at the surface of a small globular protein: a molecular dynamics simulation. Phys. Rev. E 68, 021921 (2003).

    Article  Google Scholar 

  28. Ruffle, S. V., Michalarias, I., Li, J.-C. & Ford, R. C. Inelastic incoherent neutron scattering studies of water interacting with biological macromolecules. J. Am. Chem. Soc. 124, 565–569 (2002).

    Article  CAS  Google Scholar 

  29. García-Martín, M. L., Ballesteros, P. & Cerdá n, S. The metabolism of water in cells and tissues as detected by NMR methods. Prog. NMR Spectrosc. 39, 41–77 (2001).

    Article  Google Scholar 

  30. Pollack, G. H. Cells, Gels and the Engines of Life; a New Unifying Approach to Cell Function. (Ebner and Sons Publishers, Washington, 2001).

    Google Scholar 

  31. Ho, M.-W. et al. in Water and The Cell, (eds Pollack, G. H., Cameron, I. L. & Wheatley, D. N.) 219–234 (Springer, Dordrecht, 2006).

    Book  Google Scholar 

  32. Ling, G. N. Life at the Cell and Below-Cell Level. The Hidden History of a Functional Revolution in Biology. (Pacific Press, New York, 2001).

    Google Scholar 

  33. Fullerton, G. D., Kanal, K. M. & Cameron, I. L. On the osmotically unresponsive water compartment in cells. Cell Biol. Int. 30, 74–77 (2006).

    Article  CAS  Google Scholar 

  34. Fullerton, G. D., Kanal, K. M. & Cameron, I. L. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol. Int. 30, 86–92 (2006).

    Article  CAS  Google Scholar 

  35. Wiggins, P. M. High and low density water and resting, active andtransformed cells. Cell Biol. Int. 20, 429–435 (1996).

    Article  CAS  Google Scholar 

  36. Tychinsky, V. P., Kretushev, A. V., Vyshenskaya, T. V. & Tikhonov, A. N. Coherent phase microscopy in cell biology: visualization of metabolic states. Biochim. Biophys. Acta 1708, 362–366 (2005).

    Article  CAS  Google Scholar 

  37. McIntyre, G. I. Cell hydration as the primary factor in carcinogenesis: a unifying concept. Med. Hypotheses 66, 518–526 (2006).

    Article  CAS  Google Scholar 

  38. Kinsey, S. T., Pathi, P., Hardy, K. M., Jordan, A. & Locke, B. R. Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle? J. Exp. Biol. 208, 2641–2652 (2005).

    Article  CAS  Google Scholar 

  39. Völker, J., Klump, H. H. & Breslauer, K. J. Communication between noncontacting macromolecules. Proc. Natl Acad. Sci. USA 98, 7694–7699 (2001).

    Article  Google Scholar 

  40. Cameron, I. L., Kana, l K. M. & Fullerton, G. D. Role of protein conformation and aggregation in pumping water in and out of a cell. Cell Biol. Int. 30, 78–85 (2006).

    Article  CAS  Google Scholar 

  41. Chaplin, M. F. The importance of cell water. Science in Society, 24, 42–45 (2004).

    Google Scholar 

  42. Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    Article  CAS  Google Scholar 

  43. Kawamoto, T., Ochiai, S. & Kagi, H. Changes in the structure of water deduced from the pressure dependence of the Raman OH frequency. J. Chem. Phys. 120, 5867–5870 (2004).

    Article  CAS  Google Scholar 

  44. Royer, W. E., Pardanani, A., Gibson, Q. H., Peterson, E. S. & Friedman, J. M. Ordered water molecules as key allosteric mediators in a cooperative dimeric haemoglobin. Proc. Natl Acad. Sci. USA 93, 14526–14531 (1996).

    Article  CAS  Google Scholar 

  45. Royer, W. E. High-resolution crystallographic analysis of a cooperative dimeric hemoglobin. J. Mol. Biol. 235, 657–681 (1994).

    Article  CAS  Google Scholar 

  46. Loris, R., Maes, D., Poortmans, F., Wyns, L. & Bouckaert, J. A structure of the complex between concanavalin A and methyl-3,6-di-O-(α-D-mannopyranosyl)-a-D-mannopyranoside reveals two binding modes. J. Biol. Chem. 271, 30614–30618 (1996).

    Article  CAS  Google Scholar 

  47. Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2005).

    Article  Google Scholar 

  48. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. & Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 angstrom resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  Google Scholar 

  49. Durley, R. C. E. & Mathews, F. S. Refinement and structural analysis of bovine cytochrome b5 at 1.5 angstrom resolution. Acta Crystallogr. D 52, 65–76 (1996).

    Article  CAS  Google Scholar 

  50. Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).

    Google Scholar 

  51. Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. (Leipzig) 24, 247–260 (1888); English translation available in Kunz, W., Henle, J. & Ninham, B. W. About the science of the effect of salts: Franz Hofmeister's historical papers. Curr. Opin. Coll. Interface Sci. 9, 19–37 (2004).

    Article  Google Scholar 

  52. Röntgen, W. K. Ueber die constitution des flüssigen wassers. Ann. Phys. U. Chim. (Wied) 45, 91–97 (1892).

    Article  Google Scholar 

  53. Latimer, W. M. & Rodebush, W. H. Polarity and ionization from the standpoint of the Lewis theory of valence. J. Am. Chem. Soc. 42, 1419–1433 (1920).

    Article  CAS  Google Scholar 

  54. Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Article  CAS  Google Scholar 

  55. Frank, H. S. & Evans, M. W. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945).

    Article  CAS  Google Scholar 

  56. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids, a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  57. Wicke, E., Eigen, M. & Ackermann, T. Über den zustand des protons (hydroniumions) in wäβriger lösung. Z. Physikal. Chem. N. F. 1, 340–364 (1954).

    Article  Google Scholar 

  58. Szent-Gyorgyi, A. Bioenergetics. (Academic Press, New York, 1957).

    Google Scholar 

  59. Kauzmann, W. Some factors in interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959).

    Article  CAS  Google Scholar 

  60. Ling, G. N. The physical state of water in living cell and model systems. Ann. N.Y. Acad. Sci. 125, 401–417 (1965).

    Article  CAS  Google Scholar 

  61. Narten, A. H., Danford, M. D. & Levy, H. A. X-Ray diffraction study of liquid water in the temperature range 4–200°C. Faraday Discuss. 43, 97–107 (1967).

    Article  Google Scholar 

  62. Reeke, G. N. et al. The structure of carboxypeptidase A, VI. Some results at 2.0-Å resolution, and the complex with glycyl-tyrosine at 2.8-Å resolution. Proc. Natl Acad. Sci. USA 58, 2220–2226 (1967).

    Article  CAS  Google Scholar 

  63. Rahman, A. & Stillinger, F. H. Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359 (1971).

    Article  CAS  Google Scholar 

  64. Boutron, P. & Alben, A. Structural model for amorphous solid water. J. Chem. Phys. 62, 4848–4853 (1975).

    Article  CAS  Google Scholar 

  65. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  66. Teeter, M. M. Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc. Natl Acad. Sci. USA 81, 6014–6018 (1984).

    Article  CAS  Google Scholar 

  67. Bassez, M. P., Lee, J. & Robinson, G. W. Is liquid water really anomalous? J. Phys. Chem. 91, 5818–5825 (1987).

    Article  CAS  Google Scholar 

  68. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  69. Chaplin, M. F. A proposal for the structuring of water. Biophys. Chem. 83, 211–221 (2000).

    Article  CAS  Google Scholar 

  70. Loerting, T., Salzman, C., Kohl, I., Meyer, E. & Hallbrucker, A. A second distinct structural 'state' of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 3, 5355–5357 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

Protein Data Bank

1C3W

1CYO

1ONA

4SDH

FURTHER INFORMATION

Martin Chaplin's homepage

A Brief Biography of Henry Cavendish

Sixty-three Anomalies of Water

Water Structure and Behaviour

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplin, M. Do we underestimate the importance of water in cell biology?. Nat Rev Mol Cell Biol 7, 861–866 (2006). https://doi.org/10.1038/nrm2021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing