Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology

Key Points

  • The vacuolar (V-)ATPases are ATP-driven proton pumps that function to acidify intracellular compartments and transport protons across the plasma membrane. They function in various normal and disease processes, including membrane trafficking, protein degradation, bone resorption and tumour metastasis.

  • V-ATPases are large, multisubunit complexes that are composed of two domains that operate by a rotary mechanism. ATP hydrolysis in the V1 domain drives movement of a central rotary complex that, in turn, results in proton translocation through the integral V0 domain.

  • Assembly of V-ATPases requires a number of dedicated chaperones that reside in the endoplasmic reticulum and that assist in correct assembly of the integral V0 domain. Targeting of V-ATPases to different cellular destinations is controlled by isoforms of subunit a, a 100-kDa subunit of V0.

  • V-ATPase activity is regulated in vivo by a number of mechanisms, including reversible dissociation of the V1 and V0 domains. The assembly status of the V-ATPase is in turn dependent on various effectors, including RAVE (regulator of the ATPase of vacuolar and endosomal membranes), aldolase and the cellular environment.

  • Various cells also control the density of V-ATPases in the plasma membrane as an important part of their physiology, including osteoclasts and renal intercalated cells. Insight into how this is accomplished has recently emerged from studies of epididymal cells in the male reproductive tract.

  • The integral V0 domain of the V-ATPase has been postulated to have a direct role in membrane fusion independently of its effects on acidification. Support for this hypothesis has recently emerged from studies in yeast, Drosophila melanogaster and Caenorhabditis elegans.

Abstract

The acidity of intracellular compartments and the extracellular environment is crucial to various cellular processes, including membrane trafficking, protein degradation, bone resorption and sperm maturation. At the heart of regulating acidity are the vacuolar (V-)ATPases — large, multisubunit complexes that function as ATP-driven proton pumps. Their activity is controlled by regulating the assembly of the V-ATPase complex or by the dynamic regulation of V-ATPase expression on membrane surfaces. The V-ATPases have been implicated in a number of diseases and, coupled with their complex isoform composition, represent attractive and potentially highly specific drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the V-ATPase.
Figure 2: Mechanism of proton transport by the V-ATPase.
Figure 3: Assembly of the V-ATPase complex in yeast.
Figure 4: Regulation of V-ATPase activity.
Figure 5: Role of intracellular V-ATPases in normal and disease processes.

Similar content being viewed by others

References

  1. Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases: Nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002).

    CAS  Google Scholar 

  2. Kane, P. M. The where, when and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177–191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner, C. A. et al. Renal vacuolar H+-ATPase. Physiol. Rev. 84, 1263–1314 (2004).

    CAS  PubMed  Google Scholar 

  4. Nelson, N. A journey from mammals to yeast with the vacuolar H+-ATPase. J. Bioenerg. Biomemb. 35, 281–289 (2003).

    CAS  Google Scholar 

  5. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase: a marvellous rotary engine of the cell. Nature. Rev. Mol. Cell Biol. 2, 669–677 (2001).

    CAS  Google Scholar 

  6. Cross, R. L. & Muller, V. Evolution of A, F and V-type ATP synthases and ATPases: reversal in function and changes in H+/ATP coupling ratio. FEBS Lett. 576, 1–4 (2004).

    CAS  PubMed  Google Scholar 

  7. Murata, T., Yamamoto, I., Kakinuma, Y., Leslie, A. G. & Walker, J. E. Structure of the rotor of the V-type Na-ATPase from Enterococcus hirae. Science 308, 654–659 (2005). The first high-resolution structure of an A-ATPase subcomplex (namely the proteolipid ring from E. hirae).

    CAS  PubMed  Google Scholar 

  8. Imamura, H. et al. Evidence for rotation of V1-ATPase. Proc. Natl Acad. Sci. USA 100, 2312–2315 (2003). The first evidence that an A-ATPase (closely related to the V-ATPases) is operated by a rotary mechanism.

    CAS  PubMed  Google Scholar 

  9. Ohira, M. et al. The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex. J. Biol. Chem. 281, 22752–22760 (2006).

    CAS  PubMed  Google Scholar 

  10. Sambade, M. & Kane, P. M. The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J. Biol. Chem. 279, 17361–17365 (2004).

    CAS  PubMed  Google Scholar 

  11. Supek, F. et al. A novel accessory subunit for vacuolar H+-ATPase from chromaffin granules. J. Biol. Chem. 269, 24102–24106 (1994).

    CAS  PubMed  Google Scholar 

  12. Powell, B., Graham, L. A. & Stevens, T. H. Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J. Biol. Chem. 275, 23654–23660 (2000).

    CAS  PubMed  Google Scholar 

  13. Wilkens, S. & Forgac, M. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J. Biol. Chem. 276, 44064–44068 (2001).

    CAS  PubMed  Google Scholar 

  14. Su, Y., Zhou, A., Al-Lamki, R. S. & Karet, F. E. The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J. Biol. Chem. 278, 20013–20018 (2003).

    CAS  PubMed  Google Scholar 

  15. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Arg735 of the 100 kDa a subunit of the yeast V-ATPase is essential for proton translocation. Proc. Natl Acad. Sci. USA. 98, 12397–12402 (2001).

    CAS  PubMed  Google Scholar 

  16. Iwata, M. et al. Crystal structure of a central stalk subunit C and reversible dissociation of V-ATPase. Proc. Natl Acad. Sci. USA 101, 59–64 (2004).

    CAS  PubMed  Google Scholar 

  17. Flannery, A. R., Graham, L. A. & Stevens, T. H. Topological characterization of the c, c′ and c″ subunits of the V-ATPase from the yeast S. cerevisae. J. Biol. Chem. 279, 39856–39862 (2004).

    CAS  Google Scholar 

  18. Gregorini, M., Wang, J., Xie, X. S., Milligan, R. A. & Engel, A. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J. Struct. Biol. 158, 445–454 (2007).

    CAS  PubMed  Google Scholar 

  19. Clare, D. K. et al. An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 14, 1149–1156 (2006).

    CAS  PubMed  Google Scholar 

  20. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Interacting helical surfaces of the transmembrane segments of subunits a and c′ of the yeast V-ATPase defined by disilfide-mediated cross-linking. J. Biol. Chem. 278, 41908–41913 (2003).

    CAS  PubMed  Google Scholar 

  21. Wang, Y., Inoue, T. & Forgac, M. TM2 but not TM4 of subunit c″ interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J. Biol. Chem. 279, 44628–44638 (2004).

    CAS  PubMed  Google Scholar 

  22. Arata, Y., Baleja, J. D. & Forgac, M. Localization of subunits D, E and G in the yeast V-ATPase complex using cysteine-mediated crosslinking to subunit B. Biochemistry 41, 11301–11307 (2002).

    CAS  PubMed  Google Scholar 

  23. Wilkens, S., Inoue, T. & Forgac, M. Three-dimensional structure of the vacuolar ATPase — localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942–41949 (2004). Describes the first use of a combination of EM image analysis and photoactivated cross-linking to localize a subunit in the V-ATPase.

    CAS  PubMed  Google Scholar 

  24. Inoue, T. & Forgac, M. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. J. Biol. Chem. 280, 27896–27903 (2005).

    CAS  PubMed  Google Scholar 

  25. Makyio, H. et al. Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus. EMBO J. 24, 3974–3983 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z., Charsky, C., Kane, P. M. & Wilkens, S. Yeast V1-ATPase: affinity purification and structural features by electron microscopy. J. Biol. Chem. 278, 47299–47306 (2003).

    CAS  PubMed  Google Scholar 

  27. Zhang, Z., Inoue, T., Forgac, M. & Wilkens, S. Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immunoelectron microscopy. FEBS Lett. 580, 2006–2010 (2006).

    CAS  PubMed  Google Scholar 

  28. Venzke, D. et al. Elucidation of the stator organization in the V-ATPase of Neurospora crassa. J. Mol. Biol. 349, 659–669 (2005).

    CAS  PubMed  Google Scholar 

  29. Lolkema, J. S., Chaban, Y. & Boekema, E. J. Subunit composition, structure, and distribution of bacterial V-type ATPases. J. Bioenerg. Biomembr. 35, 323–335 (2003).

    CAS  PubMed  Google Scholar 

  30. Sagermann, M., Stevens, T. H. & Matthews, B. W. Crystal structure of the regulatory subunit H of the V-type ATPase of S. cerevisiae. Proc. Natl Acad. Sci. USA 98, 7134–7139 (2001). The first high-resolution structure for any of the V-ATPase subunits.

    CAS  PubMed  Google Scholar 

  31. Drory, O., Frolow, F. & Nelson, N. Crystal structure of yeast V-ATPase C subunit reveals its stator function. EMBO Rep. 5, 1148–1152 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Curtis, K. K. & Kane, P. M. Novel V-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J. Biol. Chem. 277, 2716–2724 (2002). This study provided important insight into the function of two regulatory subunits.

    CAS  Google Scholar 

  33. Liu, M., Tarsio, M., Charsky, C. M. & Kane, P. M. Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H. J. Biol. Chem. 280, 36978–36985 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fethiere, J., Venzke, D., Madden, D. R. & Bottcher, B. Peripheral stator of the yeast V-ATPase: stoichiometry and specificity of interaction between the EG complex and subunits C and H. Biochemistry 44, 15906–15914 (2005).

    CAS  PubMed  Google Scholar 

  35. Lu, M. et al. The amino-terminal domain of the E subunit of vacuolar H+-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. J. Biol. Chem. 277, 38409–38415 (2002).

    CAS  PubMed  Google Scholar 

  36. Jones, R. P., Durose, L. J., Findlay, J. B. & Harrison, M. A. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44, 3933–3941 (2005).

    CAS  PubMed  Google Scholar 

  37. Hirata, T. et al. Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G as to c subunit. J. Biol. Chem. 278, 23714–23719 (2003).

    CAS  PubMed  Google Scholar 

  38. Vik, S. B., Long, J. C., Wada, T. & Zhang, D. A model for the structure of subunit a of the E. coli ATP synthase and its role in proton translocation. Biochim. Biophys. Acta 1458, 457–466 (2000).

    CAS  PubMed  Google Scholar 

  39. Fillingame, R. H., Angevine, C. M. & Dmitriev, O. Y. Coupling of proton movements to c-ring rotation in F1F0 ATP synthase: aqueous access channels and helix rotations at the a–c interface. Biochim. Biophys. Acta 1555, 29–36 (2002).

    CAS  PubMed  Google Scholar 

  40. Junge, W. et al. Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett. 504, 152–160 (2001).

    CAS  PubMed  Google Scholar 

  41. Kettner, C., Bertl, A., Obermeyer, G., Slayman, C. & Bihler, H. Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shunt. Biophys. J. 85, 3730–3738 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Graham, L. A., Flannery, A. R. & Stevens, T. H. Structure and assembly of the yeast V-ATPase. J. Bioenerg. Biomembr. 35, 301–312 (2003).

    CAS  PubMed  Google Scholar 

  43. Malkus, P., Graham, L. A., Stevens, T. H. & Schekman, R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol. Biol. Cell 15, 5075–5091 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis-Kaplan, S. R. et al. PKR1 encodes an assembly factor for the yeast V-type ATPase. J. Biol. Chem. 281, 32025–32035 (2006).

    CAS  PubMed  Google Scholar 

  45. Kawasaki-Nishi, S., Bowers, K., Nishi, T., Forgac, M. & Stevens, T. H The amino-terminal domain of the V-ATPase a subunit controls targeting and in vivo dissociation and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J. Biol. Chem. 276, 47411–47420 (2001).

    CAS  PubMed  Google Scholar 

  46. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J. Biol. Chem. 276, 17941–17948 (2001). This study provided an important insight into the functional differences between isoforms of subunit a.

    CAS  PubMed  Google Scholar 

  47. Manolson, M. F. et al. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J. Biol. Chem. 269, 14064–14074 (1994).

    CAS  PubMed  Google Scholar 

  48. Toyomura, T. et al. From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J. Biol. Chem. 278, 22023–22030 (2003). This study indicated that V-ATPase localization that is directed by isoforms of subunit a is not necessarily static.

    CAS  PubMed  Google Scholar 

  49. Pietrement, C. et al. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol. Reprod. 74, 185–194 (2006).

    CAS  PubMed  Google Scholar 

  50. Morel, N., Dedieu, J. C. & Philippe, J. M. Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J. Cell Sci. 116, 4751–4762 (2003).

    CAS  PubMed  Google Scholar 

  51. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nature Cell Biol. 8, 124–136 (2006). This finding suggests that V-ATPase subunits interact with other parts of the trafficking machinery in a pH-dependent manner.

    CAS  Google Scholar 

  52. Nishi, T., Kawasaki-Nishi, S. & Forgac, M. Expression and function of the mouse V-ATPase d subunit isoforms. J. Biol. Chem. 278, 46396–46402 (2003).

    CAS  PubMed  Google Scholar 

  53. Smith, A. N., Borthwick, K. J. & Karet, F. E. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297, 169–177 (2002).

    CAS  PubMed  Google Scholar 

  54. Sun-Wada, G. H. et al. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J. Biol. Chem. 277, 18098–18105 (2002).

    CAS  PubMed  Google Scholar 

  55. Sun-Wada, G. H., Yoshimizu, T., Imai-Senga, Y., Wada, Y. & Futai, M. Diversity of mouse proton-translocating ATPase: presence of multiple isoforms of the C, d and G subunits. Gene 302, 147–153 (2003).

    CAS  PubMed  Google Scholar 

  56. Paunescu, T. G. et al. Expression of the 56-kDa B2 subunit isoform of the vacuolar H+-ATPase in proton-secreting cells of the kidney and epididymis. Am. J. Physiol. Cell Physiol. 287, C149–C162 (2004).

    CAS  PubMed  Google Scholar 

  57. Murata, Y. et al. Differential localization of the vacuolar H+ pump with G subunit isoforms (G1 and G2) in mouse neurons. J. Biol. Chem. 277, 36296–36303 (2002).

    CAS  PubMed  Google Scholar 

  58. Smith, A. N. et al. Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone. J. Am. Soc. Nephrol. 16, 1245–1256 (2005).

    CAS  PubMed  Google Scholar 

  59. Norgett, E. E., Borthwick, K. J., Al-Lamki, R. S., Smith, A. N. & Karet, F. E. V1 and V0 domains of the human H+-ATPase are linked by an interaction between the G and a subunits. J. Biol. Chem. 282, 14421–14427 (2007).

    CAS  PubMed  Google Scholar 

  60. Beyenbach, K. W. & Wieczorek, H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577–589 (2006).

    CAS  PubMed  Google Scholar 

  61. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    CAS  PubMed  Google Scholar 

  62. Sautin, Y. Y., Lu, M., Gaugler, A., Zhang, L. & Gluck, S. L. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation and acidification of intracellular compartments in renal epithelial cells. Mol. Cell. Biol. 25, 575–589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu, T. & Forgac, M. Microtubules are involved in glucose-dependent dissociation of the yeast V-ATPase in vivo. J. Biol. Chem. 276, 24855–24861 (2001).

    CAS  PubMed  Google Scholar 

  64. Seol, J. H., Shevchenko, A., Shevchenko, A. & Deshaies, R. J. Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nature Cell Biol. 3, 384–391 (2001).

    CAS  PubMed  Google Scholar 

  65. Smardon, A. M., Tarsio, M. & Kane, P. M. The RAVE complex is essential for stable assembly of the yeast V-ATPase. J. Biol. Chem. 277, 13831–13839 (2002).

    CAS  PubMed  Google Scholar 

  66. Lu, M., Sautin, Y. Y., Holliday, L. S. & Gluck, S. L. The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J. Biol. Chem. 279, 8732–8739 (2004).

    CAS  PubMed  Google Scholar 

  67. Lu, M., Ammar, D., Ives, H., Albrecht, F. & Gluck, S. L. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J. Biol. Chem. 282, 24495–24503 (2007).

    CAS  PubMed  Google Scholar 

  68. Shao, E., Nishi, T., Kawasaki-Nishi, S. & Forgac, M. Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J. Biol. Chem. 278, 12985–12991 (2003).

    CAS  PubMed  Google Scholar 

  69. Shao, E. & Forgac, M. Involvement of the non-homologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. J. Biol. Chem. 279, 48663–48670 (2004).

    CAS  PubMed  Google Scholar 

  70. Qi, J. & Forgac, M. Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity. J. Biol. Chem. 282, 24743–24751 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pastor-Soler, N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278, 49523–49529 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Beaulieu, V. et al. Modulation of the actin cytoskeleton via gelsolin regulates vacuolar H+-ATPase recycling. J. Biol. Chem. 280, 8452–8463 (2005).

    CAS  PubMed  Google Scholar 

  73. Holliday, L. S. et al. The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J. Biol. Chem. 275, 32331–32337 (2000).

    CAS  PubMed  Google Scholar 

  74. Vitavska, O., Wieczorek, H. & Merzendorfer, H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J. Biol. Chem. 278, 18499–18505 (2003).

    CAS  PubMed  Google Scholar 

  75. Chen, S. H. et al. Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J. Biol. Chem. 279, 7988–7998 (2004).

    CAS  PubMed  Google Scholar 

  76. Vitavska, O., Merzendorfer, H. & Wieczorek, H. The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking to actin filaments. J. Biol. Chem. 280, 1070–1076 (2005).

    CAS  PubMed  Google Scholar 

  77. Owegi, M. A. et al. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. J. Biol. Chem. 281, 30001–30014 (2006).

    CAS  PubMed  Google Scholar 

  78. Gruenberg, J. & van der Goot, F. G. Mechanisms of pathogen entry through the endosomal compartments. Nature Rev. Mol. Cell Biol. 7, 495–504 (2006).

    CAS  Google Scholar 

  79. Abrami, L., Lindsay, M., Parton, R. G., Leppla, S. H. & van der Goot, F. G. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J. Cell Biol. 166, 645–651 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Geyer, M. et al. Subunit H of the V-ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J. Biol. Chem. 277, 28521–2859 (2002).

    CAS  PubMed  Google Scholar 

  81. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    CAS  PubMed  Google Scholar 

  82. Bayer, M. J., Reese, C., Buhler, S., Peters, C. & Mayer, A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J. Cell Biol. 162, 211–222 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hiesinger, P. R. et al. The V-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121, 607–620 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liegeois, S., Benedetto, A., Garnier, J. M., Schwab, Y. & Labouesse, M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173, 949–961 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun-Wada, G. H. et al. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J. Cell Sci. 119, 4531–4540 (2006).

    CAS  PubMed  Google Scholar 

  86. Li, G., Alexander, E. A. & Schwartz, J. H. Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis. J. Biol. Chem. 278, 19791–19797 (2003).

    CAS  PubMed  Google Scholar 

  87. Sennoune, S. R. et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am. J. Physiol. Cell Physiol. 286, C1443–C1452 (2004). This study provided the first compelling evidence for a role of plasma membrane V-ATPases in tumour-cell invasion.

    CAS  PubMed  Google Scholar 

  88. Rojas, J. D. et al. Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. J. Cell. Physiol. 201, 190–200 (2004).

    CAS  PubMed  Google Scholar 

  89. Adams, D. S. et al. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left–right patterning of non-mammalian vertebrates. Development 133, 1657–1671 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bowman, E. J. & Bowman, B. J. V-ATPases as drug targets. J. Bioenerg. Biomembr. 37, 431–435 (2005).

    CAS  PubMed  Google Scholar 

  91. Bowman, B. J. & Bowman, E. J. Mutations in subunit c of the V-ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J. Biol. Chem. 277, 3965–3972 (2002).

    CAS  PubMed  Google Scholar 

  92. Huss, M. et al. Concanamycin A, the specific inhibitor of V-ATPases, binds to the V0 subunit c. J. Biol. Chem. 277, 40544–40548 (2002).

    CAS  PubMed  Google Scholar 

  93. Bowman, B. J., McCall, M. E., Baertsch, R. & Bowman, E. J. A model for the proteolipid ring and Bafilomycin/Concanamycin binding site in the vacuolar ATPase of Neurospora crassa. J. Biol. Chem. 281, 31885–31893 (2006). This paper provides the first molecular model for the binding site of the highly specific V-ATPase inhibitors bafilomycin and concanamycin.

    CAS  PubMed  Google Scholar 

  94. Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-ATPases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).

    CAS  PubMed  Google Scholar 

  95. Shen, R., Inoue, T., Forgac, M. & Porco, J. A. Synthesis of photoactivatable acyclic analogues of the lobatamides. J. Org. Chem. 70, 3686–3692 (2004).

    Google Scholar 

  96. Xie, X. S. et al. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).

    CAS  PubMed  Google Scholar 

  97. Niikura, K., Takano, M. & Sawada, M. A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase. Br. J. Pharmacol. 142, 558–566 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nature Genet. 21, 84–90 (1999).

    CAS  PubMed  Google Scholar 

  99. Smith, A. N. et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116 kDa subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nature Genet. 26, 71–75 (2000).

    CAS  PubMed  Google Scholar 

  100. Da Silva, N. et al. Relocalization of the V-ATPase B2 subunit to the apical membraneof epididymal clear cells of mice deficient in the B1 subunit. Am. J. Physiol. Cell Physiol. 293, 199–210 (2007).

    Google Scholar 

  101. Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature Genet. 25, 343–346 (2000).

    CAS  PubMed  Google Scholar 

  102. Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W. & Manolson, M. F. Evidence that the NH2 terminus of Vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. J. Biol. Chem. 275, 15449–15457 (2000).

    CAS  PubMed  Google Scholar 

  103. Pushkin, A., Clark, I., Kwon, T. H., Nielsen, S. & Kurtz, I. Immunolocalization of NBC3 and NHE3 in the rat epididymis: colocalization of NBC3 and the vacuolar H+-ATPase. J. Androl. 21, 708–720 (2000).

    CAS  PubMed  Google Scholar 

  104. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    CAS  Google Scholar 

  105. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem. 275, 8154–8160 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Bond, D. Cipriano, A. Hinton, K. Jefferies, J. Qi and Y. Wang for many helpful discussions. This work was supported by National Institutes of Health Grant GM34478.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Michael Forgac's homepage

Glossary

Coupled transport

The coupled movement of two solutes or ions in the same or opposite directions mediated by specific transport proteins. For example, the noradrenaline—proton antiporter is responsible for uptake of noradrenaline into synaptic vesicles coupled to the efflux of protons.

ATP synthase

A Large, multisubunit complex (also called F1F0) that is involved in coupling the synthesis of ATP to the downhill transport of protons in mitochondria, chloroplasts and bacteria.

A-ATPase

An ATPase found exclusively in Archaea that is often involved in ATP synthesis (like the F-ATP synthases). A-ATPases are structurally closer to V-ATPases than to F-ATPases.

Proteolipid

A set of highly hydrophobic V-ATPase subunits (c, c′ and c″) that can be extracted into organic solvents.

Stator

The stationary part of the V-ATPase complex, composed of the A3B3 hexamer, the peripheral stalks and subunits a and e.

Cys-mediated crosslinking

Covalent crosslinking between proteins using either disulphide-bond formation between engineered Cys residues or using engineered Cys residues as the site of attachment of Cys-specific photoactivatable crosslinking reagents, such as maleimidobenzophenone.

Hemi-channels

Aqueous channels in proteins that extend only part way through the membrane.

Osteoclasts

Cells that are involved in bone resorption.

Renal intercalated cells

Renal cells in the late distal tubule and collecting duct that are specialized either for acid secretion (alpha intercalated cells) or bicarbonate secretion (beta intercalated cells). These cells help to regulate the acid–base balance in the kidney.

Epididymal clear cells

Cells that line the epididymis and that maintain the low lumenal pH that is necessary to keep sperm in a dormant state.

Renal proximal tubule cells

Renal cells in the proximal tubule that, among other functions, reabsorb peptides and small proteins that escape the glomerular filtration barrier.

Ubiquitin ligase

Protein complexes that attach ubiquitin to protein substrates for the purpose of degradation by the proteasome.

Aldolase

A glycolytic enzyme that catalyses the cleavage of fructose-1,6-diphosphate to glycrealdehyde-3-phosphate and dihydroxyacetone phosphate.

Distal tubule and collecting duct

Late portions of the renal tubule that include, among other cell types, intercalated cells.

Gelsolin

An actin-binding protein that can sever actin filaments.

Sorting endosome

An early endosomal compartment in which low pH triggers dissociation of internalized ligand—receptor complexes.

Glomerular barrier

The filtration barrier in the glomerulus at one end of the renal tubule across which plasma is filtered. This prevents cells and most proteins from entering the lumen of the renal tubule.

Adaptor protein-2

(AP2). A protein complex that is involved in clathrin-mediated endocytosis from the plasma membrane.

CD4

The major cell-surface receptor involved in infection of cells by HIV.

SNARE

(Soluble N-ethylmaleimide-sensitive factor attachment protein receptor). A family of coiled-coil proteins that are present on adjacent membranes and that are thought to assist in vesicle docking and membrane fusion through the formation of trans-SNARE complexes that bridge two membranes.

Cathepsin

Protease that normally resides in lysosomes but that can be secreted by cells that require a low pH for their activity.

Left–right asymmetry

The phenomena whereby some visceral organs are asymmetrically distributed on the left or right side of the organism.

Osteoporosis

A disease that is characterized by loss of bone density.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8, 917–929 (2007). https://doi.org/10.1038/nrm2272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing