Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing

Key Points

  • RNA polymerase IV (Pol IV) and Pol V are plant-specific RNA polymerases that have non-redundant activities that evolved as specialized forms of Pol II. Although non-essential for viability under laboratory conditions, they have important roles in plant development and genome defence.

  • In the RNA-directed DNA methylation (RdDM) pathway, Pol IV acts in conjunction with RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) to generate 24-nucleotide small interfering RNAs (siRNAs) that associate primarily with ARGONAUTE 4 (AGO4). AGO4–siRNA complexes bind to Pol V transcripts at target loci, facilitating the recruitment of chromatin modifying activities, including the de novo cytosine methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2).

  • Pol IV and Pol V orchestrate a variety of other non-coding RNA-mediated gene silencing processes, including heterochromatin organization, paramutation, short- and long-range spreading of silencing signals, and biotic and abiotic stress responses. Many of these pathways use additional components of the RdDM pathway or related silencing pathways.

  • Arabidopsis thaliana Pol IV and Pol V are differentiated by variation within their largest, fifth and seventh subunits, with additional isoforms of Pol V containing alternative third and ninth subunits. Unique subunit usage may confer functional diversification on these enzymes through mechanisms that are either inherent to the subunits themselves or through the protein–protein or protein–nucleic acid interactions they may mediate.

  • Pol V transcripts that are detected in vivo require key amino acids that are conserved at all RNA polymerase active sites. Pol IV transcripts have not been defined in vivo, but biological functions of Pol IV are also abolished by mutation of the active site.

  • Pol IV or Pol V transcription has not yet been recapitulated in vitro, precluding detailed analyses of their templates or properties as enzymes.

Abstract

In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structures of the largest subunit of the five Arabidopsis thaliana nuclear multisubunit RNA polymerases.
Figure 2: Model for the RNA-directed DNA methylation pathway in Arabidopsis thaliana.
Figure 3: Interactions among proteins of the RNA-directed DNA methylation pathway.
Figure 4: Summary of Arabidopsis thaliana Pol II, Pol IV and Pol V subunit compositions.

Similar content being viewed by others

References

  1. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nature Rev. Microbiol. 9, 85–98 (2011). This review provides a useful comparison of multisubunit RNA polymerase subunit compositions and the striking similarities between archaeal and eukaryotic RNA polymerases.

    Article  CAS  Google Scholar 

  2. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Lahmy, S., Bies-Etheve, N. & Lagrange, T. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 5, 4–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Pikaard, C. S., Haag, J. R., Ream, T. & Wierzbicki, A. T. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci. 13, 390–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herr, A. J. Pathways through the small RNA world of plants. FEBS Lett. 579, 5879–5888 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Haag, J. R., Pontes, O. & Pikaard, C. S. Metal A and Metal B sites of nuclear RNA polymerases Pol IV and Pol V are required for siRNA-dependent DNA methylation and gene silencing. PLoS ONE 4, e4110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landick, R. Functional divergence in the growing family of RNA polymerases. Structure 17, 323–325 (2009). This minireview presents a mechanistic discussion, and illuminating figures, highlighting the surprising amino acid divergence in the catalytic centres of Pol IV and Pol V relative to other RNA polymerases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tucker, S. L., Reece, J., Ream, T. S. & Pikaard, C. S. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization. Cold Spring Harb. Symp. Quant. Biol. 75, 285–297 (2011).

    Article  Google Scholar 

  9. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  10. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005). This paper revealed that a well-studied mutation that is required for transgene silencing and RdDM, silencing defective 4 , mapped to the NRPD1 gene, revealing the function of Pol IV in siRNA biogenesis.

    Article  CAS  PubMed  Google Scholar 

  11. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005). Using a reverse genetics approach to define the function of Pol IV, this paper showed that Pol IV is a nuclear enzyme that is required for heterochromatin formation and RdDM of nuclear repeats.

    Article  CAS  PubMed  Google Scholar 

  12. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030–2040 (2005). Using a reverse genetics approach, these authors identified a role for the second atypical largest subunit as a defining feature of Pol V (originally known as Pol IVb) and showed that Pol IV and Pol V have distinct roles in RdDM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet. 37, 761–765 (2005). In this study, a genetic screen for mutants defective for RdDM identified numerous alleles of the Pol V catalytic subunits and showed their involvement in RdDM downstream of siRNA biogenesis, thus defining Pol V as an activity distinct from Pol IV.

    Article  CAS  PubMed  Google Scholar 

  14. Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008). This paper identified Pol V transcripts in vivo and showed that Pol V transcription traversing the promoter regions of other genes is required for siRNA-mediated transcriptional silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ream, T. S. et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 33, 192–203 (2009). This paper revealed the subunit compositions of A. thaliana Pol II, Pol IV and Pol V, showing that each has twelve subunits, some of which are shared and some of which are unique.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, L. et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nature Struct. Mol. Biol. 16, 91–93 (2009).

    Article  CAS  Google Scholar 

  17. Mosher, R. A., Schwach, F., Studholme, D. & Baulcombe, D. C. PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc. Natl Acad. Sci. USA 105, 3145–3150 (2008). In this study, the authors conducted an insightful genome-wide analysis of Pol IV and Pol V-dependent loci and the roles of each enzyme in siRNA biogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X., Henderson, I. R., Lu, C., Green, P. J. & Jacobsen, S. E. Role of RNA polymerase IV in plant small RNA metabolism. Proc. Natl Acad. Sci. USA 104, 4536–4541 (2007). This paper provided the first genome-wide study to show that Pol IV and Pol V are required for siRNA biogenesis at thousands of loci in the A. thaliana genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raja, P., Wolf, J. N. & Bisaro, D. M. RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim. Biophys. Acta 1799, 337–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006). This paper used protein immunolocalization in combination with genetic analyses to determine the order of events in the RdDM pathway. This cell biological approach allowed the activities that had been identified genetically to be fitted into the pathway.

    Article  CAS  PubMed  Google Scholar 

  22. Kasschau, K. D. et al. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 5, e57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, 642–652 (2004).

    Article  Google Scholar 

  24. Smith, L. M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19, 1507–1521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi, Y., Denli, A. M. & Hannon, G. J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet. 38, 721–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Havecker, E. R. et al. The Arabidopsis RNA-directed DNA methylation Argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22, 321–334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006). This paper examined the need for AGO4 RNase activity in RdDM, showing that the activity is differentially required at different loci.

    Article  PubMed  Google Scholar 

  31. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Mi, S. et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Montgomery, T. A. et al. Specificity of ARGONAUTE7–miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nature Genet. 40, 670–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ausin, I., Mockler, T. C., Chory, J. & Jacobsen, S. E. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nature Struct. Mol. Biol. 16, 1325–1327 (2009).

    Article  CAS  Google Scholar 

  38. Gao, Z. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465, 106–109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wierzbicki, A. T., Ream, T. S., Haag, J. R. & Pikaard, C. S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nature Genet. 41, 630–634 (2009). This study showed that AGO4 can be crosslinked to Pol V transcripts, and associates with adjacent chromatin, providing the basis for current models for how AGO4 and the silencing machinery is recruited to its sites of action.

    Article  CAS  PubMed  Google Scholar 

  40. Law, J. A. et al. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in Arabidopsis. Curr. Biol. 20, 951–956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, X. J. et al. A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes Dev. 23, 2717–2722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanno, T. et al. RNA-directed DNA methylation and plant development require an IWR1-type transcription factor. EMBO Rep. 11, 65–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Czeko, E., Seizl, M., Augsberger, C., Mielke, T. & Cramer, P. Iwr1 directs RNA polymerase II nuclear import. Mol. Cell 42, 261–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bellaoui, M., Keddie, J. S. & Gruissem, W. DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Mol. Biol. 53, 531–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol. 12, 340–349 (2005).

    Article  CAS  Google Scholar 

  48. Zheng, X., Zhu, J., Kapoor, A. & Zhu, J. K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 26, 1691–1701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, Z. et al. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis. Plant J. 62, 92–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010). This excellent Review article provides an overview of how DNA methylation is established, maintained and interpreted.

    Article  CAS  PubMed  Google Scholar 

  51. Bies-Etheve, N. et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 10, 649–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He, X. J. et al. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137, 498–508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aufsatz, W., Mette, M. F., Van Der Winden, J., Matzke, M. & Matzke, A. J. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J. 21, 6832–6841 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He, X. J. et al. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev. 23, 318–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Earley, K. W. et al. Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev. 24, 1119–1132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sridhar, V. V. et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447, 735–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Searle, I. R., Pontes, O., Melnyk, C. W., Smith, L. M. & Baulcombe, D. C. JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes Dev. 24, 986–991 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deleris, A. et al. Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Rep. 11, 950–955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, F., Cui, X., Zhang, S., Liu, C. & Cao, X. JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res. 20, 387–390 (2010).

    Article  PubMed  Google Scholar 

  62. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Zheng, B. et al. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 23, 2850–2860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arteaga-Vazquez, M. A. & Chandler, V. L. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr. Opin. Genet. Dev. 20, 156–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hollick, J. B. Paramutation and development. Annu. Rev. Cell Dev. Biol. 26, 557–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Erhard, K. F., Jr. et al. RNA polymerase IV functions in paramutation in Zea mays. Science 323, 1201–1205 (2009). In this study, the authors used a genetic screen to identify the maize Pol IV largest subunit as a critical activity that is required for paramutation.

    Article  CAS  PubMed  Google Scholar 

  67. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006). This study provided the first indication that maizeorthologues of A. thaliana RdDM-pathway proteins are required for paramutation by identifying the maize orthologue of A. thaliana RDR2 as a key protein for paramutation.

    Article  CAS  PubMed  Google Scholar 

  68. Hale, C. J., Erhard, K. F., Jr, Lisch, D. & Hollick, J. B. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome. PLoS Genet. 5, e1000598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sidorenko, L. et al. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes. PLoS Genet. 5, e1000725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stonaker, J. L., Lim, J. P., Erhard, K. F. Jr & Hollick, J. B. Diversity of Pol IV function is defined by mutations at the maize rmr7 locus. PLoS Genet. 5, e1000706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Molnar, A., Melnyk, C. & Baulcombe, D. C. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 12, 215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet. 37, 1356–1360 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nature Genet. 39, 848–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Dunoyer, P. et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328, 912–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Dunoyer, P. et al. An endogenous, systemic RNAi pathway in plants. EMBO J. 29, 1699–1712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Brosnan, C. A. et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 14741–14746 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pontes, O., Costa-Nunes, P., Vithayathil, P. & Pikaard, C. S. RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol. Plant 2, 700–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Douet, J., Tutois, S. & Tourmente, S. A Pol V-mediated silencing, independent of RNA-directed DNA methylation, applies to 5S rDNA. PLoS Genet. 5, e1000690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amasino, R. Seasonal and developmental timing of flowering. Plant J. 61, 1001–1013 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, F. et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol. Cell 28, 398–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J., He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873–2878 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swiezewski, S. et al. Small RNA-mediated chromatin silencing directed to the 3′ region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc. Natl Acad. Sci. USA 104, 3633–3638 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Mosher, R. A. et al. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460, 283–286 (2009). This study revealed that the abundant siRNAs that are produced in developing seeds are entirely derived from the maternal chromosomes owing to a previously unknown imprinting mechanism.

    Article  CAS  PubMed  Google Scholar 

  87. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009). This intriguing paper shows that the vegetative cell of pollen derepresses transposons in order to generate siRNAs that move to the adjacent sperm cells to programme gene silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, X. J., Gaasterland, T. & Chua, N. H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 6, R30 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279–1291 (2005). The authors report how siRNA-mediated regulation of convergently transcribed gene pairs can mediate an adaptive response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A. & Jin, H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21, 3123–3134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ron, M., Alandete Saez, M., Eshed Williams, L., Fletcher, J. C. & McCormick, S. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev. 24, 1010–1021 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lahmy, S. et al. PolV(PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit. Proc. Natl Acad. Sci. USA 106, 941–946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo, J. & Hall, B. D. A multistep process gave rise to RNA polymerase IV of land plants. J. Mol. Evol. 64, 101–112 (2007). This interesting paper details the stepwise evolution of Pol IV and Pol V catalytic subunits from genes encoding Pol II subunits, beginning in green algae.

    Article  CAS  PubMed  Google Scholar 

  94. Larkin, R. M., Hagen, G. & Guilfoyle, T. J. Arabidopsis thaliana RNA polymerase II subunits related to yeast and human RPB5. Gene 231, 41–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Saez-Vasquez, J. & Pikaard, C. S. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc. Natl Acad. Sci. USA 94, 11869–11874 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Orlicky, S. M., Tran, P. T., Sayre, M. H. & Edwards, A. M. Dissociable Rpb4–Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097–10102 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Selitrennik, M., Duek, L., Lotan, R. & Choder, M. Nucleocytoplasmic shuttling of the Rpb4p and Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two pathways. Eukaryot. Cell 5, 2092–2103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lotan, R. et al. The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev. 19, 3004–3016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lotan, R., Goler-Baron, V., Duek, L., Haimovich, G. & Choder, M. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. J. Cell Biol. 178, 1133–1143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goler-Baron, V. et al. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev. 22, 2022–2027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our studies of RNA polymerases IV and V are supported by grants from the US National Institutes of Health (GM077590) and the Monsanto Company. All opinions expressed are those of the authors and do not necessarily reflect the views of our sponsors. We apologize to our many colleagues whose work was not cited owing to limitations on the numbers of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Pikaard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Craig S. Pikaard's homepage

Glossary

Short interspersed nuclear elements

(SINES). Retrotransposable elements in eukaryotic genomes that are ancestrally related to tRNAs.

Retrotransposons

Transposons that replicate through RNA intermediates and can induce mutations by inserting near or within genes.

Inverted repeats

Nucleotide sequences that contain regions of self-complementarity, such that they are capable of folding back on themselves to generate double-stranded RNA hairpin structures.

Companion cells

Specialized parenchyma cells that are located in the phloem of flowering plants and carry out the loading and unloading of molecules into associated phloem sieve-tubes.

Chromocenters

Sites of heterochromatin association in the nucleus, typically involving pericentromeric repeats and other repeats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haag, J., Pikaard, C. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12, 483–492 (2011). https://doi.org/10.1038/nrm3152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing