Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AMPK: a nutrient and energy sensor that maintains energy homeostasis

Key Points

  • AMP-activated protein kinase (AMPK) occurs as heterotrimeric protein complexes that monitor cellular energy status by sensing the concentrations of ATP, ADP and AMP.

  • Displacement of ATP by ADP or AMP at one site on the AMPK γ-subunit promotes the net phosphorylation of a conserved Thr residue within the activation loop of the kinase domain, causing >100-fold activation. Displacement of ATP or ADP by AMP at a second site on the γ-subunit causes a further tenfold allosteric activation, yielding up to 1,000-fold activation overall.

  • AMPK is activated by metabolic stresses that inhibit mitochondrial ATP production or that accelerate ATP consumption. It is also activated by many drugs and xenobiotics, most of which act by inhibiting mitochondrial function.

  • Once activated by energy stress, AMPK restores cellular energy balance by switching on catabolic, ATP-generating pathways while switching off anabolic, ATP-consuming pathways.

  • In mammals, AMPK also regulates whole-body energy balance, mainly by increasing food intake and energy expenditure through effects on the hypothalamus of the brain.

  • AMPK also regulates non-metabolic processes, such as progress through the cell cycle and excitability of neuronal membranes, with the overall purpose of sparing ATP.

Abstract

AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the mechanism of activation of AMPK.
Figure 2: Domain map of typical mammalian AMPK.
Figure 3: Two views of a crystal structure of a partial heterotrimeric complex of mammalian AMPK.
Figure 4: Effects of activation of AMPK on cellular metabolism.
Figure 5: AMPK-regulated control of feeding behaviour.

Similar content being viewed by others

References

  1. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol. 8, 774–785 (2007).

    Article  CAS  Google Scholar 

  2. Sakamoto, K. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24, 1810–1820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakamoto, K. et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am. J. Physiol. Endocrinol. Metab. 290, E780–E788 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suter, M. et al. Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207–32216 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Oakhill, J. S., Scott, J. W. & Kemp, B. E. AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab. 23, 125–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hawley, S. A. et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 271, 27879–27887 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hurley, R. L. et al. The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hawley, S. A. et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186–27191 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Davies, S. P., Helps, N. R., Cohen, P. T. W. & Hardie, D. G. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC . FEBS Lett. 377, 421–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011). The most complete structure for an AMPK heterotrimer to date. This study also suggests a model for the mechanism by which binding of AMP or ADP inhibits dephosphorylation of Thr172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oakhill, J. S. et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433–1435 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Oakhill, J. S. et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107, 19237–19241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fogarty, S. et al. Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex — synergistic effects of Ca2+ and AMP. Biochem. J. 426, 109–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Pang, T. et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J. Biol. Chem. 282, 495–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, L. et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459, 1146–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Polekhina, G. et al. AMPK β-subunit targets metabolic stress-sensing to glycogen. Curr. Biol. 13, 867–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22, 12–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Kemp, B. E. Bateman domains and adenosine derivatives form a binding contract. J. Clin. Invest. 113, 182–184 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ignoul, S. & Eggermont, J. CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 289, C1369–C1378 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Scott, J. W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274–284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Amodeo, G. A., Rudolph, M. J. & Tong, L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449, 492–495 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Townley, R. & Shapiro, L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315, 1726–1729 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hardie, D. G., Carling, D. & Gamblin, S. J. AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. 36, 470–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, W. A., Hawley, S. A. & Hardie, D. G. The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6, 1426–1434 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Mackintosh, R. W. et al. Evidence for a protein kinase cascade in higher plants. 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur. J. Biochem. 209, 923–931 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Jin, X., Townley, R. & Shapiro, L. Structural insight into AMPK regulation: ADP comes into play. Structure 15, 1285–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Mayer, F. V. et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 14, 707–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandrashekarappa, D. G., McCartney, R. R. & Schmidt, M. C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. J. Biol. Chem. 286, 44532–44541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sugden, C., Crawford, R. M., Halford, N. G. & Hardie, D. G. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. Plant J. 19, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Salt, I. P., Johnson, G., Ashcroft, S. J. H. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335, 533–539 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marsin, A. S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Corton, J. M., Gillespie, J. G. & Hardie, D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4, 315–324 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Winder, W. W. & Hardie, D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996).

    CAS  PubMed  Google Scholar 

  42. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fryer, L. G., Parbu-Patel, A. & Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct pathways. J. Biol. Chem. 277, 25226–25232 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang, J. T. et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Lim, H. W., Lim, H. Y. & Wong, K. P. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem. Biophys. Res. Commun. 389, 187–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, M. S., Kim, I. H., Kim, C. T. & Kim, Y. Reduction of body weight by dietary garlic is associated with an increase in Uncoupling Protein mRNA expression and activation of AMP-activated protein kinase in diet-induced obese mice. J. Nutr. 141, 1947–1953 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, Y. S. et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 2256–2264 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, Y. C. et al. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem. 58, 9511–9517 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Ouyang, J., Parakhia, R. A. & Ochs, R. S. Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem. 286, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, e8758 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Greer, E. L. et al. An AMPK–FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010). The authors used cells expressing an AMP- and ADP-resistant AMPK mutant to show that many AMPK activators (including metformin, resveratrol and berberine), although not all, act by inhibiting mitochondrial function and thus increasing AMP and/or ADP levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Romero-Perez, A. I., Lamuela-Raventos, R. M., Andres-Lacueva, C. & de La Torre-Boronat, M. C. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 49, 210–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Zmijewski, J. W. et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285, 33154–33164 (2010). This study provides evidence that ROS may directly activate AMPK by modifying or crosslinking two conserved Cys residues within the auto-inhibitory domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ditch, S. & Paull, T. T. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem. Sci. 37, 15–22 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sapkota, G. P. et al. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem. J. 368, 507–516 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu, X., Wan, S., Lyu, Y. L., Liu, L. F. & Qi, H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE 3, e2009 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ji, C. et al. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 29, 6557–6568 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Sanli, T. et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genet. 43, 117–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Dale, S., Wilson, W. A., Edelman, A. M. & Hardie, D. G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361, 191–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott, J. W., Norman, D. G., Hawley, S. A., Kontogiannis, L. & Hardie, D. G. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 317, 309–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geraghty, K. M. et al. Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem. J. 407, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Treebak, J. T. et al. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia 52, 891–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, S., Wasserman, D. H., MacKintosh, C. & Sakamoto, K. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab. 13, 68–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, S. et al. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem. J. 409, 449–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Pehmoller, C. et al. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 297, E665–E675 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jorgensen, S. B. et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070–1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. O'Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092–16097 (2011). Mice with muscle-specific knockout of AMPKβ1 and AMPKβ2 display dramatically reduced running speed and endurance, blunted muscle glucose uptake in response to treadmill exercise and markedly impaired contraction-stimulated glucose uptake in isolated muscles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barnes, K. et al. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J. Cell Sci. 115, 2433–2442 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Habets, D. D. et al. Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim. Biophys. Acta 1791, 212–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Marsin, A. S., Bouzin, C., Bertrand, L. & Hue, L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277, 30778–30783 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Merrill, G. M., Kurth, E., Hardie, D. G. & Winder, W. W. AICAR decreases malonyl-CoA and increases fatty acid oxidation in skeletal muscle of the rat. Am. J. Physiol. 273, E1107–E1112 (1997).

    CAS  PubMed  Google Scholar 

  80. Winder, W. W. et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88, 2219–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011). AMPK activation switches on autophagy, especially of mitochondria (mitophagy), and disruption of this pathway leads to the accumulation of dysfunctional mitochondria in cells.

    Article  CAS  PubMed  Google Scholar 

  87. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Davies, S. P., Carling, D., Munday, M. R. & Hardie, D. G. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203, 615–623 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Muoio, D. M., Seefeld, K., Witters, L. A. & Coleman, R. A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338, 783–791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clarke, P. R. & Hardie, D. G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 9, 2439–2446 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jorgensen, S. B. et al. The α2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53, 3074–3081 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hoppe, S. et al. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc. Natl Acad. Sci. USA 106, 17781–17786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1114 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011). Class IIa Lys deacetylases are physiological targets of AMPK, and deacetylation of FOXO family transcription factors by this mechanism contributes to inhibition of gluconeogenic gene expression by AMPK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kola, B. et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem. 280, 25196–25201 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kubota, N. et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011). This study shows that ghrelin activates AMPK via a Ca2+-dependent mechanism in presynaptic neurons upstream of NPY/AgRP neurons in the hypothalamus, activating a positive feedback loop that causes continued neurotransmitter release and feeding until the action of leptin on POMC neurons causes the release of opioids that inhibit AMPK in the presynaptic neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Andrews, Z. B. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 32, 2248–2255 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Med. 16, 1001–1008 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Viollet, B. et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nader, N., Chrousos, G. P. & Kino, T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 21, 277–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M. & Esumi, H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-β-d- ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287, 562–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol. 9, 218–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins Involved in mitosis. Mol. Cell 45, 1–15 (2012). Description of a chemical genetic screen that identified many new targets for AMPK, some of which appear to be phosphorylated to allow completion of mitosis.

    Article  CAS  Google Scholar 

  116. Vazquez-Martin, A., Oliveras-Ferraros, C. & Menendez, J. A. The active form of the metabolic sensor: AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle 8, 2385–2398 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Sengupta, B., Stemmler, M., Laughlin, S. B. & Niven, J. E. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ikematsu, N. et al. Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc. Natl Acad. Sci. USA 108, 18132–18137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Misonou, H., Mohapatra, D. P. & Trimmer, J. S. Kv2.1: a voltage-gated K+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 26, 743–752 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies described that were carried out in the authors' laboratory were supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grahame Hardie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

D. Grahame Hardie's homepage

Glossary

Glycogen phosphorylase

The primary enzyme that mobilizes stores of glucose in glycogen, catalysing the release of glucose-1-phosphate from the non-reducing ends of glycogen by a phosphorolysis reaction.

Phosphofructokinase

Enzyme that catalyses a key regulatory step in glycolysis: the transfer of phosphate from ATP to fructose-6-phosphate to generate fructose-1,6-bisphosphate.

Fructose-1,6-bisphosphatase

Enzyme that catalyses a key regulatory step in gluconeogenesis (hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate) in the liver and kidney.

Membrane excitability

Some biological membranes, such as the plasma membranes of neurons, are excitable because they contain voltage-gated Na+ channels that open in response to depolarization, allowing Na+ ions to flood into the cell down their concentration gradient; this amplifies the depolarization and causes a wave of depolarization (an action potential) to travel along the membrane.

Allosteric activation

The activation of an enzyme by non-covalent binding of a ligand (an allosteric activator) that binds at a site distinct from the catalytic site.

Activation loop

A sequence segment in the C-terminal lobe of protein kinases that often plays a key part in switching the kinase on; in many cases, the kinase is only active after phosphorylation of this loop.

LKB1–STRAD–MO25 complex

A heterotrimeric complex containing the tumour suppressor protein kinase LKB1 (liver kinase B1) and the accessory subunits STRAD (STE20-related kinase adapter protein) and MO25 (also known as calcium-binding protein 39). LKB1 was found to be the gene that is mutated in a form of inherited cancer susceptibility (Peutz–Jeghers syndrome) and is also lost owing to somatic mutation in many human cancers.

N-terminal myristylation

The covalent attachment of 14 carbon saturated fatty acid (myristic acid), usually to the N terminus of a protein following cleavage of the initiating Met.

CBS repeat

Sequence motif usually occurring as two tandem repeats that form a Bateman domain. They are named after cystathionine β-synthase, in which the Bateman domain binds S-adenosyl Met.

Bateman domain

A domain formed by two tandem CBS repeats that associate together with central clefts that bind small molecules, especially adenosine derivatives.

Glutathionylation

The covalent attachment of glutathione to a protein via the formation of a mixed disulphide between the Cys moiety of glutathione and a Cys side chain of the protein.

Ataxia telangiectasia

An inherited human disorder of which the clinical signs include ataxia (uncoordinated movement) and telangiectasia (dilated blood vessels in the skin or mucous membranes). It is caused by mutation of the ataxia telangiectasia mutated (ATM) gene, which encodes a protein kinase of the phosphoinositide 3-kinase-like kinase (PIKK) family.

RAB-GAPs

Proteins carrying a RAB-GTPase activator protein function — that is, the ability to promote conversion of small G proteins of the RAB family from their active RAB-GTP state to their inactive RAB-GDP state.

Mitophagy

The special form of autophagy by which mitochondria (probably in a damaged or defective state) are engulfed by autophagosomes and degraded, and their contents recycled for re-use.

Arcuate nucleus

An anatomical region of the hypothalamus at the base of the brain that appears to have a particular role in feeding and appetite.

Ghrelin

A 28-amino-acid peptide that is released by cells of the stomach and represents a 'hunger signal'.

Presynaptic neurons

Neurons acting immediately upstream of the neurons under study. Presynaptic neurons release neurotransmitters directly onto the neurons of interest.

Miniature excitatory postsynaptic currents

Small depolarizing currents that can be measured by patch clamping of a neuron. The currents are generated by packets of neurotransmitters released from a presynaptic neuron upstream of the patch-clamped neuron. These currents can be observed by applying tetrodotoxin to inhibit the firing of action potentials in the neuron.

Ryanodine receptors

Ca2+ release channels in the sarcoplasmic/endoplasmic reticulum of muscle cells and neurons. These receptors are activated by Ca2+ and blocked by the plant product ryanodine.

Ventromedial hypothalamus

An anatomical region of the hypothalamus at the base of the brain that appears to have a role in glucose sensing and activation of the sympathetic nervous system.

Circadian rhythms

Biological rhythms that follow the normal 24 hour cycle; although endogenously driven and thus continuing in the absence of external cues, they are often entrained or modified by external stimuli such as light or food availability.

Suprachiasmatic nucleus

A hypothalamic bilateral structure that is the central pacemaker of circadian rhythms in mammals.

Delayed rectifier potassium channels

A group of voltage-gated potassium channels that open and close slowly in response to membrane depolarization. By allowing potassium ions to flow out of cells down their concentration gradient and thus oppose subsequent depolarization, these channels regulate the frequency of action potentials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, D., Ross, F. & Hawley, S. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251–262 (2012). https://doi.org/10.1038/nrm3311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing