Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Multidrug-resistance efflux pumps ? not just for resistance

Abstract

It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multidrug-resistance efflux pumps.

Similar content being viewed by others

References

  1. Borges-Walmsley, M. I., McKeegan, K. S. & Walmsley, A. R. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376, 313?338 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paulsen, I. T. Multidrug efflux pumps and resistance: regulation and evolution. Curr. Opin. Microbiol. 6, 446?451 (2003).

    CAS  PubMed  Google Scholar 

  3. Li, X. & Nikaido, H. Efflux mediated drug resistance in bacteria. Drugs 64, 159?204 (2004).

    CAS  PubMed  Google Scholar 

  4. Poole, K. Efflux mediated multi-resistance in Gram-negative bacteria. Clin. Microbiol. Infect. 10, 12?26 (2004).

    CAS  PubMed  Google Scholar 

  5. Poole, K. Efflux mediated antimicrobial resistance. J. Antimicrob. Chemother. 56, 20?51 (2005).

    CAS  PubMed  Google Scholar 

  6. Hooper, D. C. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin. Infect. Dis. 40, 1811?1817 (2005).

    CAS  PubMed  Google Scholar 

  7. Piddock, L. J. V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382?402 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramos, J. L. et al. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326?356 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Koronakis, V., Eswaran, J. & Hughes, C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu. Rev. Biochem. 73, 467?489 (2004).

    CAS  PubMed  Google Scholar 

  10. Aires, J. R. & Nikaido, H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 187, 1923?1929 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eswaran, J., Koronakis, E., Higgins, M. K., Hughes, C. & Koronakis, V. Three's company: component structures bring a closer view of tripartite drug efflux pumps. Curr. Opin. Struct. Biol. 14, 741?747 (2004).

    CAS  PubMed  Google Scholar 

  12. Li, X. Z., Livermore, D. M. & Nikaido, H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother. 38, 1732?1741 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Poole, K., Krebes, K., McNally, C. & Neshat, S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175, 7363?7372 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Livermore, D. L. Linezolid in vitro: mechanism and antibacterial spectrum. J. Antimicrob. Chemother. 51, 9?16 (2003).

    Google Scholar 

  15. Johnson, K. W., Lofland, D. & Moser, H. E. PDF inhibitors: an emerging class of antibacterial drugs. Curr. Drug Targets Infect. Disord. 5, 39?52 (2005).

    CAS  PubMed  Google Scholar 

  16. Buysse, J. M. et al. Mutation of the AcrAB antibiotic efflux pump in Escherichia coli confers susceptibility to oxazolidinone antibiotics. Abstract C-42. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (New Orleans, Louisiana, USA, 15?18 Sep 1996).

    Google Scholar 

  17. Chollet, R., Chevalier, J., Bryskier, A. & Pages, J. M. The AcrAB?TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob. Agents Chemother. 48, 3621?3624 (2004).

    CAS  Google Scholar 

  18. Peric, M., Bozdogan, B., Jacobs, M. R. & Appelbaum, P. C. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 47, 1017?1022 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanchez, L., Pan, W., Vinas, M. & Nikaido, H. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J. Bacteriol. 179, 6855?6857 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dean, C. R., Visalli, M. A., Projan, S. J., Sum, P. E. & Bradford. P. A. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 47, 972?978 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Visalli, M. A., Murphy, E., Projan, S. J. & Bradford, P. A. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob. Agents Chemother. 47, 665?669 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Poole, K. & Srikumar, R. Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr. Top. Med. Chem. 1, 59?71 (2001).

    CAS  PubMed  Google Scholar 

  23. Matsuda, N. et al. Substrate specificities of MexAB?OprM, MexCD?OprJ, and MexXY?OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 3322?3327 (2000).

    Google Scholar 

  24. Ziha-Zarifi, I., Llanes, C., Köhler, T., Pechère, J.-C. & Plésiat, P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA?MexB?OprM. Antimicrob. Agents Chemother. 43, 287?291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh, H., Stenhoff, J., Jalal, S. & Wretlind, B. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. Microb. Drug Resist. 9, 323?328 (2003).

    CAS  PubMed  Google Scholar 

  26. Hocquet, D., Bertand, X., Kohler, T., Talon, D. & Plésiat, P. Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob. Agents Chemother. 47, 1887?1894 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306?308 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikaido, H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 515?523 (1998).

    Google Scholar 

  29. Fernandes, P., Ferreira, B. S. & Cabral, J. M. Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int. J. Antimicrob. Agents 22, 211?216 (2003).

    CAS  PubMed  Google Scholar 

  30. White, D. G., Goldman, J. D., Demple B. & Levy, S. B. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179, 6122?6126 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenberg, E. Y., Ma, D. & Nikaido, H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 182, 1754?1756 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zgurskaya, H. I. & Nikaido, H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37, 219?225 (2000).

    CAS  PubMed  Google Scholar 

  33. Nishino, K. & Yamaguchi, A. Analysis of the complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183, 5803?5812 (2001).

    CAS  PubMed  Google Scholar 

  34. Mazzariol, A., Tokue, Y., Kanegawa, T. M., Cornaglia, G. & Nikaido, H. High level fluoroquinolone resistant clinical isolates of Escherichia coli over produce multidrug efflux protein AcrA. Antimicrob. Agents Chemother. 44, 3441?3443 (2000); erratum in 45, 647 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oethinger, M., Kern, W. V., Jellen-Ritter, A. S., McMurry, L. M. & Levy, S. B. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 44, 10?13 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Webber, M. A. & Piddock. L. J. V. Absence of mutations in marAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother. 45, 1550?1552 (2001).

    CAS  PubMed  Google Scholar 

  37. Everett, M. J., Jin, Y.-F., Ricci, V. & Piddock, L. J. V. Contribution of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli isolated from humans and animals. Antimicrob. Agents Chemother. 40, 2380?2386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eaves, D. J., Ricci, V. & Piddock, L. J. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob. Agents Chemother. 48, 1145?1150 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Baucheron, S. et al. AcrAB?TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar TyphimuriumDT104. Antimicrob. Agents Chemother. 48, 3729?3735 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishino, K., Latifi, T. & Groisman, E. A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 59, 126?141 (2006).

    CAS  PubMed  Google Scholar 

  41. Giraud, E., Cloeckaert, A., Kerboeuf, D. & Chaslus-Dancla, E. Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 44, 1223?1228 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Piddock, L. V. J., White, D. G., Gensberg, K., Pumbwe, L. & Griggs, D. J. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 44, 3118?3121 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Piddock, L. J. V., Griggs, D. J., Hall, M. C. & Jin, Y. F. Ciprofloxacin resistance in clinical isolates of Salmonella typhimurium obtained from two patients. Antimicrob. Agents Chemother. 37, 662?666 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wain, J. et al. Quinolone-resistant Salmonella typhi in Viet Nam: basis of resistance and clinical response to treatment. Clin. Infect. Dis. 25, 1404?1410 (1997).

    CAS  PubMed  Google Scholar 

  45. Molbak, K. et al. An outbreak of multidrug-resistant, quinolone-resistant, Salmonella enterica serotype Typhimurium DT104. N. Engl. J. Med. 341, 1420?1425 (1999).

    CAS  PubMed  Google Scholar 

  46. Pumbwe, L. & Piddock, L. J. V. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett. 206, 185?189 (2002).

    CAS  PubMed  Google Scholar 

  47. Lin, J., Overbye, L. M. & Zhang, Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46, 2124?2131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pumbwe, L., Randall, L. P., Woodward, M. J. & Piddock, L. J. V. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiply antibiotic-resistant Campylobacter spp. J. Antimicrob. Chemother. 54, 341?347 (2004).

    CAS  PubMed  Google Scholar 

  49. Pumbwe, L., Randall, L. P., Woodward, M. J. & Piddock, L. J. V. Evidence for multiple antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob. Agents Chemother. 49, 1289?1293 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, J., Sahin, O., Michel, L. O. & Zhang, Q. Critical role of multi-drug efflux pump CmeABC in bile resistance and in vivo colonisation of Campylobacter jejuni. Infect. Immun. 71, 4250?4259 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Veal, W. L., Nicholas, R. A. & Shafer, W. M. Overexpression of the MtrC?MtrD?MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol. 184, 5619?5624 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neyfakh, A. A. The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob. Agents Chemother. 36, 484?485 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshida, H., Bogaki, M., Nakamura, S., Ubukata, K. & Konno, M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172, 6942?6949 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Neyfakh, A. A., Borsch, C. M. & Kaatz, G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37, 128?129 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaatz, G. W., Seo, S. M. & Ruble, C. A. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 37, 1086?1094 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ng, E. Y., Truckis, M. & Hooper, D. C. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob. Agents Chemother. 38, 1345?1355 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, M. E., Boenink, N. M., Verhoef, J., Kohrer, K. & Schmitz, F.-J. Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate the long term stability in an antibiotic-free environment. J. Antimicrob. Chemother. 45, 353?356 (2000).

    CAS  PubMed  Google Scholar 

  58. Noguchi, N., Okada, H., Narui, K. & Sasatsu, M. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microb. Drug Resist. 10, 197?203 (2004).

    CAS  PubMed  Google Scholar 

  59. Schmitz, F.-J. et al. Relationship between mutations in the coding and promoter regions of the norA genes in 42 unrelated clinical isolates of Staphylococcus aureus and the MICs of norfloxacin for these strains. J. Antimicrob. Chemother. 42, 561?563 (1998).

    CAS  PubMed  Google Scholar 

  60. Oizumi, N. et al. Relationship between mutations in the DNA gyrase and topoisomerase lV genes and nadifloxacin resistance in clinically isolated quinolone-resistant Staphylococcus aureus. J. Infect. Chemother. 7, 191?194 (2001).

    CAS  PubMed  Google Scholar 

  61. Gill, M. J., Brenwald, N. P. & Wise, R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43, 187?189 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Piddock, L. J. V., Johnson, M. M., Simjee, S. & Pumbwe, L. Expression of efflux pump gene pmrA in fluoroquinolone-resistant and -susceptible clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 808?812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marrer, E. et al. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 50, 685?693 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ambrose, K. D., Nisbet, R. & Stephens, D. S. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob. Agents Chemother. 49, 4203?4209 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stone, B. J. & Miller, V. L. Salmonella enteritidis has a homologue of tolC that is required for virulence in BALB/c mice. Mol. Microbiol. 17, 701?712 (1995).

    CAS  PubMed  Google Scholar 

  66. Lacroix, F. J. C. et al. Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol. Lett. 135, 161?167 (1996).

    CAS  PubMed  Google Scholar 

  67. Baucheron, S., Mouline, C., Praud, K., Chaslus-Dancla, E. & Cloeckaert, A. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J. Antimicrob. Chemother. 55, 707?712 (2005).

    CAS  PubMed  Google Scholar 

  68. Buckley, A. M. et al. The AcrAB?TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell. Microbiol. 8, 847?856 (2006).

    CAS  PubMed  Google Scholar 

  69. Hirakata, Y. et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J. Exp. Med. 196, 109?118 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jerse, A. E. et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71, 5576?5582 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Burse, A., Weingart, H. & Ullrich, M. S. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol. Plant Microbe Interact. 17, 43?54 (2004).

    CAS  PubMed  Google Scholar 

  72. Burse, A., Weingart, H. & Ullrich, M. S. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl. Environ. Microbiol. 70, 693?703 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koronakis, V. & Hughes, C. Synthesis, maturation and export of the E. coli hemolysin. Med. Microbiol. Immunol. (Berl.) 185, 65?71 (1996).

    CAS  Google Scholar 

  74. Binet, R., Letoffe, S., Ghigo, J. M., Delepelaire, P. & Wandersman, C. Protein secretion by Gram-negative bacterial ABC exporters ? a review. Gene 192, 7?11 (1997).

    CAS  PubMed  Google Scholar 

  75. Bhakdi, S. et al. The hemolysin of Escherichia coli. Eur. J. Epidemiol. 4, 135?143 (1988).

    CAS  PubMed  Google Scholar 

  76. Gilson, L., Mahanty, H. K. & Kolter, R. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9, 3875?3894 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bina, J. E. & Mekalanos, J. J. Vibrio cholerae tolC is required for bile resistance and colonization. Infect. Immun. 69, 4681?4685 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Boardman, B. K. & Satchell, K. J. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J. Bacteriol. 186, 8137?8143 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Join-Lambert, O. F. et al. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob. Agents Chemother. 45, 571?576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, V. T. & Schneewind, O. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 15, 1725?1752 (2001).

    CAS  PubMed  Google Scholar 

  81. Groisman, E. A., Eduardo, A. & Mouslim, C. Molecular mechanisms of Salmonella pathogenesis. Curr. Opin. Infect. Dis. 13, 519?522 (2000).

    CAS  PubMed  Google Scholar 

  82. Evans, K. et al. Influence of the MexAB?OprM multi-drug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180, 5443?5447 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249?258 (2006).

    CAS  Google Scholar 

  84. Sanchez, P. et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50, 657?664 (2002).

    CAS  PubMed  Google Scholar 

  85. Yang, S., Lopez, C. R. & Zechiedrich, E. L. Quorum sensing and multi-drug transporters in Escherichia coli. Proc. Natl Acad. Sci. USA 103, 2386?2391 (2006).

    CAS  PubMed  Google Scholar 

  86. Linares, J. F. et al. Overexpression of the multidrug efflux pumps MexCD?OprJ and MexEF?OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187, 1384?1391 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma, D. et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 16, 45?55 (1995).

    CAS  PubMed  Google Scholar 

  88. Nikaido, H., Basina, V., Nguyen, V. & Rosenberg, E. Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 4686?4692 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Prouty, A. M., Brodsky, I. E., Falkow, S. & Gunn, J. S. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150, 775?783 (2004).

    CAS  PubMed  Google Scholar 

  90. Rouquette, C., Harmon, J. B. & Shafer, W. M. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol. Microbiol. 33, 651?658 (1999).

    CAS  PubMed  Google Scholar 

  91. Elkins, C. A. & Mullis, L. B. Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J. Bacteriol. 188, 1191?1195 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shafer, W. M., Qu, X.-D., Waring, A. J. & Lehrer, R. I. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA 95, 1829?1833 (1998).

    CAS  PubMed  Google Scholar 

  93. Sulavik, M. C. et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 1126?1136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaatz, G. W. & Seo, S. M. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 41, 2733?2737 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hsieh, P. -C., Siegel, S. A., Rogers, B., Davis, D. & Lewis, K. Bacteria lacking a multidrug pump: a sensitive tool for drug discovery. Proc. Natl Acad. Sci. USA 95, 6602?6606 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to W. Shafer for reading the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Campylobacter jejuni

Erwinia amylovora

Escherichia coli

Haemophilus influenzae

Neisseria gonorrhoeae

Proteus mirabilis

Pseudomonas aeruginosa

Salmonella enterica serovar Enteritidis

Salmonella enterica serovar Typhimurium

Staphylococcus aureus

Streptococcus pneumoniae

Vibrio cholerae

FURTHER INFORMATION

British Society for Antimicrobial Chemotherapy susceptibility testing

Clinical and Laboratory Standards Institute

European Committee on Antimicrobial Susceptibility Testing

Laura Piddock's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piddock, L. Multidrug-resistance efflux pumps ? not just for resistance. Nat Rev Microbiol 4, 629–636 (2006). https://doi.org/10.1038/nrmicro1464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing