Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens

Key Points

  • The interaction of probiotic surface molecules with host pattern recognition receptors (PRRs) and associated co-receptors plays a key part in the observed health benefits of probiotic bacteria.

  • Flagella, fimbriae, secreted proteins, cell wall-associated polysaccharides (CPSs), lipoteichoic acid (LTA), lipopolysaccharide (LPS) and peptidoglycan (PG) are important probiotic surface molecules that contain microorganism-associated molecular patterns (MAMPs), which are recognized by PRRs.

  • Documented PRRs that can transduce signals on interaction with probiotic surface molecules include Toll-like receptor 2 (TLR2) (in heterodimers with TLR1 or TLR6), TLR4 and TLR5, the C type lectin dentritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and nucleotide-binding oligomerization domain-containing protein (NOD)-like receptors. These receptors do not function in isolation but cooperate with various co-receptors.

  • PRRs transduce these signals, through associated adaptor proteins that are linked to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling cascades, to the cell nucleus to modulate the expression of response genes that include genes for cytokines, chemokines, antimicrobial peptides, cytoprotective factors and co-stimulatory molecules.

  • Non-phagocytic intestinal epithelial cells and phagocytic DCs differ in their responsiveness for probiotic MAMPs. This is especially relevant for LTA, LPS and PG, as their MAMPs are normally embedded in the cell walls of whole bacterial cells.

  • Some parallels can be drawn between the interactions of the isolated surface molecules of probiotics, commensals and pathogens. However, it is the coordinated sum of the interactions of the various bacterial surface and effector molecules with the PRRs and co-receptors that determines the final host cell response against a certain microorganism.

  • Surface molecules of probiotic bacteria and their host receptors are subject to dynamic regulation as a function of time and space. Glycans are important in these dynamics, possibly modulating ligand–receptor interactions and providing an additional opportunity of discrimination between MAMPs of probiotics, commensals and pathogens.

Abstract

How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism–host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host–probiotic interactions can benefit from well-documented host–microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The probiotic Gram-positive and Gram-negative surface macromolecules and glycobiome.
Figure 2: Interaction of probiotic bacteria with IECs and DCs from the GALT.
Figure 3: Probiotic MAMP–PRR interactions in IECs and associated signalling events.
Figure 4: Probiotic MAMP–PRR interactions in DCs and associated signalling events.

Similar content being viewed by others

References

  1. Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol. 5, 569–573 (2004).

    Article  CAS  Google Scholar 

  2. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Food and Agriculture Organization of the United Nations and WHO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO, Rome/WHO, Geneva, 2001).

  4. Marco, M. L., Pavan, S. & Kleerebezem, M. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 17, 204–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L. & Gershwin, M. E. Probiotics and immunity. J. Gastroenterol. 44, 26–46 (2009).

    Article  PubMed  Google Scholar 

  6. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. Genes and molecules of Lactobacillus supporting probiotic action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mack, D. R., Ahrne, S., Hyde, L., Wei, S. & Hollingsworth, M. A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52, 827–833 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schlee, M. et al. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin. Exp. Immunol. 151, 528–535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schlee, M. et al. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated throuah flagellin. Infect. Immun. 75, 2399–2407 (2007). This work uses a genetic loss-of-function approach with various E. coli Nissle 1917 mutants and a complementary gain-of-function approach with purified flagellin to convincingly show that the induction of human BD2 in IECs is mediated through flagellin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seth, A., Yan, F., Polk, D. B. & Rao, R. K. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1060–G1069 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, F. et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562–575 (2007). This study uses an elegant approach to identify two soluble proteins of the probiotic L. rhamnosus GG, p40 and p75, that stimulate Akt activation in IECs and inhibit TNF-induced IEC apoptosis; this was carried out using purified proteins and immunodepletion of the proteins to block their biological effects.

    Article  CAS  PubMed  Google Scholar 

  13. Smits, H. H. et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Goldin, B. R. & Gorbach, S. L. Clinical indications for probiotics: an overview. Clin. Infect. Dis. 46, S96–S100 (2008).

    Article  PubMed  Google Scholar 

  15. Delcour, J., Ferain, T., Deghorain, M., Palumbo, E. & Hols, P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 159–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Erridge, C., Bennett-Guerro, E. & Poxton, I. R. Structure and function of lipopolysaccharides. Microbes Infect. 4, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Voltan, S. et al. Lactobacillus crispatus M247-derived H2O2 acts as a signal transducing molecule activating peroxisome proliferator activated receptor-γ in the intestinal mucosa. Gastroenterology 135, 1216–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling through Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol. 6, 9–20 (2006).

    Article  CAS  Google Scholar 

  22. Triantafilou, M., Brandenburg, K., Gutsmann, T., Seydel, U. & Triantafilou, K. Innate recognition of bacteria: engagement of multiple receptors. Crit. Rev. Immunol. 22, 251–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Erridge, C., Pridmore, A., Eley, A., Stewart, J. & Poxton, I. R. Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal through Toll-like receptor 2. J. Med. Microbiol. 53, 735–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Haller, D. Intestinal epithelial cell signalling and host-derived negative regulators under chronic inflammation: to be or not to be activated determines the balance towards commensal bacteria. Neurogastroenterol. Motil. 18, 184–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007).

    Article  CAS  Google Scholar 

  26. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003). This article demonstrates that flagellin is sufficient to recapitulate the epithelial proinflammatory responses to S . Typhimurium, by conducting gene profiling experiments using genetic loss-of-function approaches with Salmonella flagellin mutants and complementary gain-of-function approaches with purified flagellin. This is a clear example of how molecular research on probiotics could benefit from the concepts and tools that are developed in pathogen–host studies.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andersen-Nissen, E., Smith, K. D., Bonneau, R., Strong, R. K. & Aderem, A. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J. Exp. Med. 204, 393–403 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bambou, J. C. et al. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J. Biol. Chem. 279, 42984–42992 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Comstock, L. E. Importance of glycans to the host-Bacteroides mutualism in the mammalian intestine. Cell Host Microbe 5, 522–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Lyons, S. et al. Salmonella typhimurium transcytoses flagellin through an SPI2-mediated vesicular transport pathway. J. Cell Sci. 117, 5771–5780 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Schuller, S., Lucas, M., Kaper, J. B., Giron, J. A. & Phillips, A. D. The ex vivo response of human intestinal mucosa to enteropathogenic Escherichia coli infection. Cell. Microbiol. 11, 521–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Adamo, R., Sokol, S., Soong, G., Gomez, M. I. & Prince, A. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am. J. Respir. Cell Mol. Biol. 30, 627–634 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Scott, J. R. & Zahner, D. Pili with strong attachments: Gram-positive bacteria do it differently. Mol. Microbiol. 62, 320–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Proft, T. & Baker, E. N. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell. Mol. Life Sci. 66, 613–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Fischer, H., Yamamoto, M., Akira, S., Beutler, B. & Svangborg, C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur. J. Immunol. 36, 267–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Hajishengallis, G., Wang, M., Liang, S., Triantafilou, M. & Triantafilou, K. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defence function. Proc. Natl Acad. Sci. USA 105, 13532–13537 (2008). This is an elegant example of how bacteria can modulate and fine-tune host cell responses by simultaneously binding TLRs and associated co-receptors in lipid raft structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lasaro, M. A. et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl. Environ. Microbiol. 75, 246–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Lebeer, S. et al. Identification of a gene cluster for the biosynthesis of a long galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl. Environ. Microbiol. 75, 3554–3563 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kankainen, M. et al. Genomic analysis of the probiotic Lactobacillus rhamnosus GG reveals pili containing a human mucus-binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009). Using a mutant approach combined with isolated pili subunits, the authors describe for the first time a role for fimbriae (or pili) of the probiotic strain L. rhamnosus GG in adherence to mucus. These fimbriae could promote the interaction of this probiotic with PRRs and mediate signaling functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barocchi, M. A. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl Acad. Sci. USA 103, 2857–2862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pretzer, G. et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187, 6128–6136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan, F., Vanderpool, C., Cao, H. & Polk, D. B. Soluble proteins produced by Lactobacillus rhamnosus GG (LGG) activate EGF receptor to regulate the anti-apoptotic response in intestinal epithelial cells. Gastroenterology 132, A102–A103 (2007).

    Article  CAS  Google Scholar 

  46. Basu, S. et al. Helicobacter pylori protein HP0175 transactivates epidermal growth factor receptor through TLR4 in gastric epithelial cells. J. Biol. Chem. 283, 32369–32376 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Bergonzelli, G. E. et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 425–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Granato, D. et al. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 72, 2160–2169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finberg, R. W. & Kurt-Jones, E. A. CD14: chaperone or matchmaker? Immunity 24, 127–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, Y. et al. Helicobacter pylori heat-shock protein 60 induces interleukin-8 through a Toll-like receptor (TLR) 2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. J. Med. Microbiol. 56, 154–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Konstantinov, S. R. et al. S. layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl Acad. Sci. USA 105, 19474–19479 (2008). The first description of a Lactobacillus sp. ligand (a putative SlpA glycoprotein) for the receptor DC-SIGN, which can regulate immature DC and T cell functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Kooyk, Y. & Geijtenbeek, T. B. H. DC-SIGN: escape mechanism for pathogens. Nature Rev. Immunol. 3, 697–709 (2003).

    Article  CAS  Google Scholar 

  53. Welman, A. D. & Maddox, I. S. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21, 269–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Kasper, D. L. Bacterial capsule – old dogmas and new tricks. J. Infect. Dis. 153, 407–415 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Yasuda, E., Serata, M. & Sako, T. Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides: their suppressive effect on the activation of macrophages. Appl. Environ. Microbiol. 74, 4746–4755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hafez, M. et al. The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect. Immun. 77, 2995–3003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005). Using mutant approaches combined with isolated compounds applied in a gnotobiotic mouse model, this study shows that a bacterial polysaccharide of the human symbiont Bacteroides fragilis can direct the cellular and physical maturation of the developing immune system. This is a clear example of how probiotics research could benefit from the concepts and tools that are developed in symbiont–host studies.

    Article  CAS  PubMed  Google Scholar 

  58. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Q. et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J. Exp. Med. 203, 2853–2863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma, A. & Qadri, A. Vi polysaccharide of Salmonella Typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl Acad. Sci. USA 101, 17492–17497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raffatellu, M. et al. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 73, 3367–3374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lopez, M., Li, N., Kataria, J., Russel, M. & Neu, J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J. Nutr. 138, 2264–2268 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Nilsen, N. J. et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling; role of CD14 and CD36. J. Leukoc. Biol. 84, 280–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Melmed, G. et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J. Immunol. 170, 1406–1415 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Otte, J. M., Cario, E. & Podolsky, D. K. Mechanisms of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126, 1054–1070 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007). The first crystallographic study for a TLR1–TLR2–lipopeptide complex. On the basis of this study, some predictions can be made for the LTA–TLR2 interaction, which is also thought to be important for certain probiotic effects.

    Article  CAS  PubMed  Google Scholar 

  67. Vidal, K., Donnet-Hughes, A. & Granato, D. Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect. Immun. 70, 2057–2064 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Matsuguchi, T. et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activitives in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10, 259–266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, H. G. et al. Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-alpha production. J. Microbiol. Biotechnol. 18, 1191–1196 (2008).

    CAS  PubMed  Google Scholar 

  71. Grangette, C. et al. Enhanced anti inflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005). Using a mutant approach, this article describes how the composition of LTA and its D -alanine substitutions in the whole-cell context of L. plantarum can modulate immune responses in vitro and in experimental IBD models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72. Perea Vélez, M. et al. Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 3595–3604 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  73. Abreu, M. T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Abreu, M. T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Ortega-Cava, C. F. et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol. 170, 3977–3985 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Triantafilou, M. et al. Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem. J. 381, 527–532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grozdavov, L. et al. A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J. Bacteriol. 184, 5912–5925 (2002).

    Article  CAS  Google Scholar 

  78. Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007). This investigation shows that the intestinal enzyme alkaline phosphatase has a role in keeping the peace at the gut epithelial surface by dephosphorylating and therefore detoxifying lipopolysaccharide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Niers, L. E. et al. Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin. Exp. Immunol. 149, 344–352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bickert, T. et al. Probiotic Escherichia coli Nissle 1917 suppresses allergen-induced Th2 responses in the airways. Int. Arch. Allergy Immunol. 149, 219–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Bergman, M. P. et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200, 979–990 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asong, J., Wolfert, M. A., Maiti, K. K., Miller, D. & Boons, G. J. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J. Biol. Chem. 284, 8634–8644 (2009). The authors demonstrate that synthetic muropeptides derived from the DAP-containing PG of L. plantarum can be recognized by TLR2. However, L. plantarum PG shows lower affinity with TLR2 than other DAP–PGs owing to amidation of the α-carboxylic acid of isoglutamic acid and the γ-carboxylic acid of DAP residues.

    Article  CAS  Google Scholar 

  84. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur through peptidoglycan recognition. EMBO Rep. 5, 1000–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cario, E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54, 1182–1193 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wolfert, M. A., Roychowdhury, A. & Boons, G. J. Modification of the structure of peptidoglycan is a strategy to avoid detection by nucleotide-binding oligomerization domain protein 1. Infect. Immun. 75, 706–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Vavricka, S. R. et al. hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127, 1401–1409 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Foligne, B. et al. A key role of dendritic cells in probiotic functionality. PLOS ONE 2, e313 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zeuthen, L. H., Fink, L. N. & Frokiaer, H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124, 489–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Gryllos, I. et al. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl Acad. Sci. USA 105, 16755–16760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007). This work uses an interesting model system (in which the microbiota is reduced to one bacterial species ( B. thetaiotaomicron ) and the antibody repertoire to a single monoclonal immunoglobulin A against a major CPS molecule of this bacterium)to show that the adaptive immune system has a crucial role in establishing a sustainable host–microorganism relationship through immunoselection of bacterial epitope expression.

    Article  CAS  PubMed  Google Scholar 

  93. Hooper, L. V. & Gordon, J. I. Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11, R1–R10 (2001).

    Article  Google Scholar 

  94. Logan, S. M. Flagellar glycosylation – a new component of the motility repertoire? Microbiology 152, 1249–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Hart, A. L. et al. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53, 1602–1609 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Klijn, A., Mercenier, A. & Arigoni, F. Lessons from the genomes of bifidobacteria. FEMS Microbiol. Rev. 29, 491–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Viljanen, M. et al. Induction of inflammation as a possible mechanism of probiotic effect in atopic eczema-dermatitis syndrome. J. Allergy Clin. Immunol. 115, 1254–1259 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Guarino, A., Lo Vecchio, A. & Canani, R. B. Probiotics as prevention and treatment for diarrhea. Curr. Opin. Gastroenterol. 25, 18–23 (2009).

    Article  PubMed  Google Scholar 

  99. Mukherjee, S., Vaishnava, S. & Hooper, L. V. Multi-layered regulation of intestinal antimicrobial defence. Cell. Mol. Life Sci. 65, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Wada, A. et al. Helicobacter pylori-mediated transcriptional regulation of the human β-defensin 2 gene requires NF-κB. Cell. Microbiol. 3, 115–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sonnenburg, J. L., Chen, C. T. L. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol. 4, 2213–2226 (2006).

    Article  CAS  Google Scholar 

  102. Ayabe, T. et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  103. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. De Keersmaecker, S. C. J. et al. Flow cytometric testing of green fluorescent protein-tagged Lactobacillus rhamnosus GG for response to defensins. Appl. Environ. Microbiol. 72, 4923–4930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lehrer, R. I. & Ganz, T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9, 18–22 (2002).

    Article  PubMed  Google Scholar 

  106. Biol-N'garagba, M. C. & Louisot, P. Regulation of the intestinal glycoprotein glycosylation during postnatal development: role of hormonal and nutritional factors. Biochemie 85, 331–352 (2003).

    Article  CAS  Google Scholar 

  107. Bry, L., Falk, P. G., Midtvedt, T. & Gordon, J. I. A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T. & Gordon, J. I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA 96, 9833–9838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weber, A. N. & Morse, M. A. G. N. J. Four N-linked glycosylation sites in human Toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J. Biol. Chem. 279, 34589–34594 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. da Silva Correia, J. & Ulevitch, R. J. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J. Biol. Chem. 277, 1845–1854 (2002).

    Article  PubMed  CAS  Google Scholar 

  111. Lee, K. M. et al. Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity through the blockage of TLR-4 signaling. Helicobacter 9, 632–642 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Hooper, L. V. Do symbiotic bacteria subvert host immunity? Nature Rev. Microbiol. 7, 367–374 (2009).

    Article  CAS  Google Scholar 

  113. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. De Vuyst, L. & Degeest, B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Benz, I. & Schmidt, M. A. Never say never again: protein glycosylation in pathogenic bacteria. Mol. Microbiol. 45, 267–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Kinoshita, H. et al. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expressed on the cell surface of Lactobacillus plantarum LA 318 mediates adhesion to human colonic mucin. J. Dairy Sc. 90, 427 (2007).

    Article  Google Scholar 

  117. Weiss, A. A. & Iyer, S. S. Glycomics aims to interpret the third molecular language of cells. Microbe 2, 489–497 (2007).

    Google Scholar 

  118. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  119. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  Google Scholar 

  120. Ogushi, K. et al. Gangliosides act as co-receptors for Salmonella enteritidis FliC and promote FliC induction of human β-defensin-2 expression in Caco-2 cells. J. Biol. Chem. 279, 12213–12219 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Varga, J. J. et al. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol. Microbiol. 62, 680–694 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Kolb-Maurer, A. et al. Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infect. Immun. 68, 3680–3688 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boneca, I. G. et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl Acad. Sci. USA 104, 997–1002 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose work had to be omitted through considerations of space. S.L. holds a BOF postdoctoral Mandate from the Katholieke Universiteit Leuven, Belgium. S.C.J.D.K. was a postdoctoral research fellow of the Research Foundation Flanders (FWO-Vlaanderen). We are also grateful for the financial support of FWO-Vlaanderen (project G.0236.07). We thank W. de Vos for exchange of information and interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid C. J. De Keersmaecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Bacteroides fragilis

Bacteroides thetaiotaomicron

Escherichia coli

Helicobacter pylori

Lactobacillus acidophillus NCFM

Lactobacillus plantarum WCFS1

Lactobacillus rhamnosus GG

Lactobacillus salivarius

Salmonella enterica subsp. enterica serovar Typhi

Salmonella enterica subsp. enterica serovar Typhimurium

Staphylococcus aureus

FURTHER INFORMATION

Author's homepage

Glossary

Mutualism

An interaction between two species such that both partners benefit in some way. For example, the gut microbiota receives nutrients from the host and provide the host with additional genetic and metabolic attributes, including the ability to harness nutrients that are otherwise inaccessible.

Adjuvant

Any substance that acts to accelerate, prolong or enhance antigen-specific immune responses when used in combination with specific vaccine antigens.

Defensin

In mammals, defensins are one of the major families of antimicrobial peptides that have a key role in the protection of mucosal surfaces against microbial invasion. They are usually 30–42 amino acids long, have a cationic charge and contain six cysteine residues that participate in three intramolecular disulphide bonds. Most defensins function by binding to the microbial cell membrane, resulting in the formation of pore-like membrane defects.

Tight junctions

Lipid–protein complexes at the apical junctions of epithelial cells, forming a barrier that can selectively allow the passage of ions and electrolytes.

Membrane lipid rafts

Transient cholesterol- and sphingolipid-enriched microdomains found in eukaryotic cell membranes, compartmentalizing cellular processes. They serve as organizing centres for the assembly of signalling molecules and receptors, for example.

Moonlighting protein

A protein that has more than one role in an organism. Well-known examples in bacteria are cytosolic glycolytic enzymes, such as glyceraldehyde 3-phosphate dehydrogenase and enolase, which can function as adhesins once secreted outside the cell.

Prohibitin

A putative tumour suppressor molecule that regulates the mammalian cell cycle. Prohibitin and its related members are abundant in mitochondria but are also present in the cell membrane and the nucleus. In intestinal epithelial cells, prohibitin-like proteins are enriched in lipid rafts and are believed to be involved in signalling events.

Phase variation

The (epi)genetic reversible on-and-off switching of surface epitope production that may function to provide a pool of bacteria with an evolutionary advantage upon rapid environmental changes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8, 171–184 (2010). https://doi.org/10.1038/nrmicro2297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing