Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Symbiotic digestion of lignocellulose in termite guts

Key Points

  • The symbiotic digestion of lignocellulose by termites involves the sequential activities of the host and its gut microbiota.

  • The hindgut of termites is a microbial bioreactor that efficiently converts polymeric substrates to acetate and variable amounts of methane, with hydrogen as a central intermediate. The metabolic processes are strongly affected by the influx of oxygen into the gut periphery.

  • Whereas primitive termites digest wood with the help of cellulolytic protists, the more advanced lineages have an entirely prokaryotic gut microbiota. Major shifts in the gut microbial community seem to reflect changes in digestive strategies and diet.

  • The majority of termites are soil-feeding and mineralize peptides and other nitrogen-rich humus components. The consequences of the microbial processes in their highly alkaline guts for nitrogen cycling in tropical soils and greenhouse gas production are only scarcely investigated.

  • It is becoming increasingly evident that the association of termites with gut bacteria not only functions in digestion but also enables the host to use the biosynthetic capacities of its symbionts as a nutritional resource.

  • Termites are promising sources of novel microorganisms and catalytic capacities for the production of biofuels from lignocellulosic feedstock. However, the nature of the activities that are involved in the efficient digestion of lignified cell walls remains unclear.

Abstract

Their ability to degrade lignocellulose gives termites an important place in the carbon cycle. This ability relies on their partnership with a diverse community of bacterial, archaeal and eukaryotic gut symbionts, which break down the plant fibre and ferment the products to acetate and variable amounts of methane, with hydrogen as a central intermediate. In addition, termites rely on the biosynthetic capacities of their gut microbiota as a nutritional resource. The mineralization of humus components in the guts of soil-feeding species also contributes to nitrogen cycling in tropical soils. Lastly, the high efficiency of their minute intestinal bioreactors makes termites promising models for the industrial conversion of lignocellulose into microbial products and the production of biofuels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dual-cellulolytic systems of termites.
Figure 2: Diversity of the bacterial microbiota in termite guts.
Figure 3: Increasing gut compartmentation in higher termites.
Figure 4: Major microbial processes in the hindgut of lower termites.
Figure 5: Nitrogen cycling in lower termites.

Similar content being viewed by others

References

  1. Breznak, J. A. & Brune, A. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39, 453–487 (1994).

    Article  CAS  Google Scholar 

  2. Bignell, D. E. & Eggleton, P. in Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T., Bignell, D. E., Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).

    Book  Google Scholar 

  3. Su, N.-Y. & Scheffrahn, R. H. A review of subterranean termite control practices and prospects for integrated pest management programmes. Integ. Pest. Manag. Rev. 3, 1–13 (1998).

    Google Scholar 

  4. Rouland-Lefèvre, C. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 499–517 (Springer, 2011).

    Google Scholar 

  5. Wood, T. G. The agricultural importance of termites in the tropics. Agr. Zool. Rev. 7, 117–155 (1996).

    Google Scholar 

  6. Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nature Commun. 2, 262 (2011).

    Article  CAS  Google Scholar 

  7. Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222 (2011).

    Article  Google Scholar 

  8. Eggleton, P. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 1–26 (Springer, 2011).

    Google Scholar 

  9. Watanabe, H. & Tokuda, G. Cellulolytic systems in insects. Annu. Rev. Entomol. 55, 609–632 (2010). This review provides an excellent overview of the endogenous cellulolytic system of termites and was authored by the two scientists who contributed most essentially to its discovery.

    Article  CAS  PubMed  Google Scholar 

  10. Leidy, J. The parasites of the termites. J. Acad. Nat. Sci. (Phila.) 8, 425–447 (1881).

    Google Scholar 

  11. Brune, A. & Ohkuma, M. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 439–475 (Springer, 2011).

    Google Scholar 

  12. Lo, N. & Eggleton, P. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 27–50 (Springer, 2011).

    Google Scholar 

  13. Ebert, A. & Brune, A. Hydrogen concentration profiles at the oxic–anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol. 63, 4039–4046 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breznak, J. A. in Termites: Evolution, Sociality, Symbiosis, Ecology (eds Abe, T., Bignell, D. E. & Higashi, M.) 209–231 (Kluwer Academic Publishers, 2000). This chapter is the last comprehensive review written by the long-time leader in the field of termite gut microbiology and provides important insights into the nitrogen economy of the gut, with many links to the older literature.

    Book  Google Scholar 

  15. Leadbetter, J. R. & Breznak, J. A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62, 3620–3631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson, C. L., Vier, R., Mikaelyan, A., Wienemann, T. & Brune, A. 'Candidatus Arthromitus' revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 14, 1454–1465 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Tamschick, S. & Radek, R. Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. Eur. J. Protistol. 49, 1–14 (2013).

    Article  PubMed  Google Scholar 

  18. Ohkuma, M. & Brune, A. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E, Roisin, Y. & Lo, N.) 413–438 (Springer, 2011).

    Google Scholar 

  19. Hongoh, Y. & Ohkuma, M. in (Endo)symbiotic Methanogenic Archaea (ed. Hackstein, J.H.P) 55–80 (Springer, 2010).

    Book  Google Scholar 

  20. Hongoh, Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life Sci. 68, 1311–1325 (2011). This paper is an important review by one of the experts in the field, with more details on the recent advances in lignocellulose digestion and nitrogen metabolism by termite gut symbionts.

    Article  CAS  PubMed  Google Scholar 

  21. Hongoh, Y., Ohkuma, M. & Kudo, T. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol. Ecol. 44, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Stingl, U. Radek, R., Yang, H. & Brune, A. 'Endomicrobia': cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl. Environ. Microbiol. 71, 1473–1479 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, H., Schmitt-Wagner, D., Stingl, U. & Brune, A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ. Microbiol. 7, 916–932 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Noda, S. et al. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl. Environ. Microbiol. 71, 8811–8817 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hongoh, Y. et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322, 1108–1109 (2008). This paper reports the second genome of a flagellate symbiont, documenting a crucial role in nitrogen fixation and the capacity for ammonia assimilation and amino acid upgrading.

    Article  CAS  PubMed  Google Scholar 

  26. Nobre, T., Rouland-Lefèvre, C. & Aanen, D. K. in Biology of Termites: A Modern Synthesis (eds Bignell D. E., Roisin, Y. & Lo, N.) 193–210 (Springer, 2011).

    Google Scholar 

  27. Hongoh, Y. et al. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol. Ecol. 15, 505–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Shinzato, N., Muramatsu, M., Matsui, T. & Watanabe, Y. Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci. Biotechnol. Biochem. 71, 906–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, N. et al. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS ONE 8, e69184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyodo, F. et al. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 17, 186–193 (2003).

    Article  Google Scholar 

  31. Anklin-Mühlemann, R., Bignell, D. E., Veivers, P. C., Leuthold, R. H. & Slaytor, M. Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J. Insect Physiol. 41, 929–940 (1995).

    Article  Google Scholar 

  32. Hongoh, Y. et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71, 6590–6599 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hongoh, Y. et al. Phylogenetic diversity, localization and cell morphologies of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently found bacterial groups dominant in termite guts. Appl. Environ. Microbiol. 72, 6780–6788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007). This paper reports the first metagenome of a termite gut microbiota, providing evidence for a major role of Fibrobacteres in cellulose degradation in the hindgut of higher termites and a 'treasure trove' for other important gene functions.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt-Wagner, D., Friedrich, M. W., Wagner, B. & Brune, A. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol. 69, 6007–6017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thongaram, T. et al. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9, 229–238 (2005).

    Article  PubMed  Google Scholar 

  37. He, S. et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE 8, e61126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ji, R., Kappler, A. & Brune, A. Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol. Biochem. 32, 1281–1291 (2000).

    Article  CAS  Google Scholar 

  39. Ji, R. & Brune, A. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biol. Fertil. Soils 33, 166–174 (2001).

    Article  CAS  Google Scholar 

  40. Vairavamurthy, A. & Wang, S. Organic nitrogen in geomacromolecules: insights on speciation and transformation with K-edge XANES spectroscopy. Environ. Sci. Technol. 36, 3050–3056 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).

    Article  CAS  Google Scholar 

  42. Brune, A. & Kühl, M. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol. 42, 1121–1127 (1996).

    Article  CAS  Google Scholar 

  43. Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ni, J. & Tokuda, G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 31, 838–850 (2013). This paper is the most detailed current review of the literature on the dual cellulolytic system of termites and includes a critical review of the numerous studies of lignin modification during gut passage.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, H., Noda, H., Tokuda, G. & Lo, N. A cellulase gene of termite origin. Nature 394, 330–331 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Tokuda, G. et al. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecol. 13, 3219–3228 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lo, N., Watanabe, H. & Tokuda, G. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 51–67 (Springer, 2011).

    Google Scholar 

  48. Tokuda, G. & Watanabe, H. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3, 336–339 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burnum, K. E. et al. Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. ISME J. 5, 161–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Johjima, T., Taprab, Y., Noparatnaraporn, N., Kudo, T. & Ohkuma, M. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Appl. Microbiol. Biotechnol. 73, 195–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Slaytor, M. Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem. Physiol. 103, 775–784 (1992).

    Google Scholar 

  52. Griffiths, B. S., Bracewell, J. M., Robertson, G. W. & Bignell, D. E. Pyrolysis–mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biol. Biochem. 57, 957–959 (2012).

    Article  CAS  Google Scholar 

  53. Hyodo, F., Azuma, J. & Abe, T. Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki, on lignin by solid-state CP MAS C-13 NMR. Holzforschung 53, 244–246 (1999).

    Article  CAS  Google Scholar 

  54. Katsumata, K. S., Jin, Z., Hori, K. & Iiyama, K. Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J. Wood Sci. 53, 419–426 (2007).

    Article  CAS  Google Scholar 

  55. Li, H., Lu, J. & Mo, J. Physicochemical lignocellulose modification by the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) and its potential uses in the production of biofuels. BioResources 7, 675–685 (2012).

    CAS  Google Scholar 

  56. Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA 105, 12932–12937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hopkins, D. W. et al. Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood- and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva. Biodegradation 9, 423–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Ke, J., Laskar, D. D., Singh, D. & Chen, S. In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol. Biofuels 4, 17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tartar, A. et al. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels 2, 25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Coy, M. R. et al. Phenol-oxidizing laccases from the termite gut. Insect Biochem. Molec. Biol. 40, 723–732 (2010).

    Article  CAS  Google Scholar 

  61. Wheeler, M. M., Tarver, M. R., Coy, M. R. & Scharf, M. E. Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes. Arch. Insect Biochem. Physiol. 73, 30–48 (2010).

    CAS  PubMed  Google Scholar 

  62. Martinez, D. et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA 106, 1954–1959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kappler, A. & Brune, A. Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol. Biochem. 34, 221–227 (2002).

    Article  CAS  Google Scholar 

  64. Vu, A. T., Ngyen, N. C. & Leadbetter, J. R. Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2, 239–247 (2004).

    Article  CAS  Google Scholar 

  65. Li, H. et al. Physiochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. J. Insect Physiol. 58, 1368–1375 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Kappler, A. & Brune, A. Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl. Soil Ecol. 13, 219–229 (1999).

    Article  Google Scholar 

  67. Chang, H.-M., Cowling, E. B., Brown, W., Adler, E. & Miksche, G. E. Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29, 153–159 (1975).

    Article  CAS  Google Scholar 

  68. Hu, Z., Yeh, T.-F., Chang, H.-M., Matsumoto, Y. & Kadla, J. F. Elucidation of the structure of cellulolytic enzyme lignin. Holzforschung 60, 389–397 (2006).

    Article  CAS  Google Scholar 

  69. Matsumura, Y., Sudo, K. & Shimizu, K. Enzymatic hydrolysis of woods. II. Effect of grinding and alkali treatment on hydrolysis of woods by Trichoderma viride cellulase. Mokuzai Gakkaishi 23, 562–570 (1977).

    CAS  Google Scholar 

  70. Brune, A. Termite guts: the world's smallest bioreactors. Trends Biotechnol. 16, 16–21 (1998).

    Article  CAS  Google Scholar 

  71. Tholen, A. & Brune, A. Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ. Microbiol. 2, 436–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Pester, M. & Brune, A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J. 1, 551–565 (2007). This paper reports the in situ assessment of hydrogen turnover and other metabolic fluxes in the hindgut of several lower termites, combining microsensor and isotope dilution techniques.

    Article  CAS  PubMed  Google Scholar 

  73. Köhler, T., Dietrich, C., Scheffrahn, R. H. & Brune, A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78, 4691–4701 (2012). This is the first study that combines microsensor techniques with high-throughput sequencing and is the first evidence for hydrogen accumulation in the gut of wood-feeding higher termites.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sugimoto, A. et al. Methane and hydrogen production in a termite–symbiont system. Ecol. Res. 13, 241–257 (1998).

    Article  CAS  Google Scholar 

  75. Schmitt-Wagner, D. & Brune, A. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol. 65, 4490–4496 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Inoue, J.-I., Saita, K., Kudo, T., Ui, S. & Ohkuma, M. Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot. Cell 6, 1925–1932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lilburn, T. G., Schmidt, T. M. & Breznak, J. A. Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1, 331–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Iida, T., Ohkuma, M., Ohtoko, K. & Kudo, T. Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol. Ecol. 34, 17–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Leadbetter, J. R., Schmidt, T. M., Graber, J. R. & Breznak, J. A. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686–689 (1999). This study reports the isolation of termite gut spirochaetes in pure culture and the basis for their identification as the major hydrogen sink in wood-feeding termites; it was a milestone in termite gut research.

    Article  CAS  PubMed  Google Scholar 

  80. Graber, J. R., Leadbetter, J. R. & Breznak, J. A. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70, 1315–1320 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Graber, J. R. & Breznak, J. A. Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl. Environ. Microbiol. 70, 1307–1314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salmassi, T. M. & Leadbetter, J. R. Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149, 2529–2537 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Pester, M. & Brune, A. Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ. Microbiol. 8, 1261–1270 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Matson, E. G., Gora, K. G. & Leadbetter, J. R. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach. PLoS ONE 6, e19316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, X., Matson, E. G. & Leadbetter, J. R. Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach. Environ. Microbiol. 13, 307–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Ottesen, E. A. & Leadbetter, J. R. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Appl. Environ. Microbiol. 77, 3461–3467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, X. & Leadbetter, J. R. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts. mBio 3, e00223–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ballor, N. R. & Leadbetter, J. R. Patterns of [FeFe] hydrogenase diversity in the gut communities of lignocellulose-feeding higher termites. Appl. Environ. Microbiol. 78, 5368–5374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ballor, N. R., Paulsen, I. & Leadbetter, J. R. Genomic analysis reveals multiple [FeFe] hydrogenases and hydrogen sensors encoded by treponemes from the H2-rich termite gut. Microb. Ecol. 63, 282–294 (2012).

    Article  PubMed  Google Scholar 

  90. Ottesen, E. A. & Leadbetter, J. R. Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana. Appl. Environ. Microbiol. 76, 4909–4913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dröge, S., Rachel, R., Radek, R. & König, H. Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int. J. Syst. Evol. Microbiol. 58, 1079–1083 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Brune, A. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 707–728 (Springer, 2010).

    Book  Google Scholar 

  93. Deevong, P. et al. Isolation and detection of methanogens from the gut of higher termites. Microb. Environ. 19, 221–226 (2004).

    Article  Google Scholar 

  94. Brune, A. in (Endo)symbiotic Methanogenic Archaea (ed. Hackstein, J.H.P) 81–100 (Springer, 2011).

    Google Scholar 

  95. Paul, K., Nonoh, J. O., Mikulski, L. & Brune, A. 'Methanoplasmatales': Thermoplasmatales-related archaea in termite guts and other environments are the seventh order of methanogens. Appl. Environ. Microbiol. 78, 8245–8253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pester, M., Tholen, A., Friedrich, M. W. & Brune, A. Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl. Environ. Microbiol. 73, 2024–2028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Darlington, J. P. E. C., Zimmerman, P. R., Greenberg, J., Westberg, C. & Bakwin, P. Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J. Trop. Ecol. 13, 491–510 (1997).

    Article  Google Scholar 

  98. Nakajima, H., Hongoh, Y., Usamib, R., Kudo, T. & Ohkuma, M. Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol. Ecol. 54, 247–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Wertz, J. T. & Breznak, J. A. Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl. Environ. Microbiol. 73, 6819–6828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wertz, J. T. & Breznak, J. A. Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. Appl. Environ. Microbiol. 73, 6829–6841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wertz, J. T., Kim, E., Breznak, J. A., Schmidt, T. M. & Rodrigues, J. L. M. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colotermitum gen. nov., sp. nov. reveals microaerophily and nitrogen fixation genes. Appl. Environ. Microbiol. 78, 1544–1555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boga, H. I., Ji, R., Ludwig, W. & Brune, A. Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Arch. Microbiol. 187, 15–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Boga, H. I. & Brune, A. Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl. Environ. Microbiol. 69, 779–786 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tholen, A., Pester, M. & Brune, A. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol. Ecol. 62, 303–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Lighton, J. R. B. & Ottesen, E. A. To DGC or not to DGC: oxygen guarding in the termite Zootermopsis nevadensis (Isoptera: Termopsidae). J. Exp. Biol. 208, 4671–4678 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Ngugi, D. K., Ji, R. & Brune, A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites — a 15N-based approach. Biogeochemistry 103, 355–369 (2011).

    Article  CAS  Google Scholar 

  107. Tayasu, I., Abe, T., Eggleton, P. & Bignell, D. E. Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol. Entomol. 22, 343–351 (1997).

    Article  Google Scholar 

  108. Ji, R. & Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78, 267–283 (2006).

    Article  CAS  Google Scholar 

  109. Ngugi, D. K. & Brune, A. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 14, 860–871 (2012). This paper analyses nitrogen metabolism in soil-feeding termites using isotope tracers and provides evidence for the production of N 2 O and an unusual ammonia-oxidizing activity in the posterior hindgut.

    Article  CAS  PubMed  Google Scholar 

  110. Köhler, T., Stingl, U., Meuser, K. & Brune, A. Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ. Microbiol. 10, 1260–1270 (2008).

    Article  PubMed  CAS  Google Scholar 

  111. Friedrich, M. W., Schmitt-Wagner, D., Lueders, T. & Brune, A. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67, 4880–4890 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brümmer, C., Papen, H., Wassmann, R. & Brüggemann, N. Termite mounds as hot spots of nitrous oxide emissions in South-Sudanian savanna of Burkina Faso (West Africa). Geophys. Res. Lett. 36, L09814 (2009).

    Article  CAS  Google Scholar 

  113. Fujita, A. Lysozymes in insects: what role do they play in nitrogen metabolism? Physiol. Entomol. 299, 305–310 (2004).

    Article  Google Scholar 

  114. Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Neef, A. et al. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biol. Evol. 3, 1437–1448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sabree, Z. L. et al. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl. Environ. Microbiol. 78, 204–210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lilburn, T. G. et al. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Yamada, A., Inoue, T., Noda, Y., Hongoh, H. & Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Noda, S., Ohkuma, M., Usami, R., Horikoshi, K. & Kudo, T. Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl. Environ. Microbiol. 65, 4935–4942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Leigh, J. A. & Dodsworth, J. A. Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Noda, S. et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16, 1257–1266 (2007). This paper is an elegant case study of co-evolution between the partners of a tripartite symbiosis involving a lineage of termites, their major gut flagellate and its intracellular symbiont.

    Article  CAS  PubMed  Google Scholar 

  123. Inoue, T., Kitade, O., Yoshimura, T. & Yamaoka, I. in Termites: Evolution, Sociality, Symbiosis, Ecology (eds Abe, T., Bignell, D. E. & Higashi, M.) 275–288 (Kluwer Academic Publishers, 2000).

    Book  Google Scholar 

  124. Hongoh, Y. et al. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl Acad. Sci. USA 105, 5555–5560 (2008). This paper reports the first genome analysis of a flagellate endosymbiont that maintained its biosynthetic pathways for vitamins and amino acids despite considerable genome erosion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Noda, S., Hongoh, Y., Sato, T. & Ohkuma, M. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol. Biol. 9, 158 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Strassert, J. F. H. et al. 'Candidatus Ancillula trichonymphae', a novel lineage of endosymbiotic Actinobacteria in termite gut flagellates of the genus Trichonympha. Environ. Microbiol. 14, 3259–3270 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Ikeda-Ohtsubo, W. & Brune, A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Mol. Ecol. 18, 332–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Desai, M. S. et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12, 2120–2132 (2010).

    CAS  PubMed  Google Scholar 

  129. Ikeda-Ohtsubo, W., Faivre, N. & Brune, A. Putatively free-living 'Endomicrobia' — ancestors of the intracellular symbionts of termite gut flagellates? Environ. Microbiol. 2, 554–559 (2010).

    Google Scholar 

  130. Ohkuma, M., Noda, S., Hongoh, Y., Nalepa, C. A. & Inoue, T. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus Proc. R. Soc. B 276, 239–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Carpenter, K. J., Chow, L. & Keeling, P. J. Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus. J. Eukaryot. Microbiol. 56, 305–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Rosengaus, R. B., Zecher, C. N., Schultheis, K. F., Brucker, R. M. & Bordenstein, S. R. Disruption of termite gut microbiota and its prolonged consequences for fitness. Appl. Environ. Microbiol. 77, 4303–4312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Geissinger, O., Herlemann, D. P. R., Mörschel, E., Maier, U. G. & Brune, A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl. Environ. Microbiol. 75, 2831–2840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Noda, S., Hongoh, Y., Sato, T. & Ohkuma, M. Molecular phylogeny and evolution of Parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1α. PLoS ONE 7, e29938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brugerolle, G. & Radek, R. in Intestinal Microorganisms of Termites and Other Invertebrates (eds König, H. & Varma, A.) 243–269 (Springer, 2006).

    Book  Google Scholar 

  136. Todaka, N. et al. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS ONE 5, e8636 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Bayané, A. & Guiot, S. R. Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev. Environ. Sci. Biotechnol. 10, 43–62 (2011).

    Article  CAS  Google Scholar 

  138. Sasaguri, S. et al. Codon optimization prevents premature polyadenylation of heterologously-expressed cellulases from termite-gut symbionts in Aspergillus oryzae. J. Gen. Appl. Microbiol. 54, 343–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G. & Azuma, J.-I. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Molec. Biol. 32, 777–784 (2002).

    Article  CAS  Google Scholar 

  140. Schauer, C., Thompson, C. L. & Brune, A. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78, 2758–2767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shinzato, N., Muramatsu, M., Matsui, T. & Watanabe, Y. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci. Biotechnol. Biochem. 69, 1145–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The current concept of symbiotic digestion in termite guts is based on countless contributions from many colleagues. The author tried his best to identify the mentors of important advances but regrets that space restrictions did not always permit references to the original work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brune.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Hydrogenosomes

The hydrogen-producing organelles of many anaerobic protists; they share a common origin with mitochondria but only generate ATP by substrate-level phosphorylation.

Endoglucanases

Cellulases that randomly hydrolyse β-1,4-glycosidic bonds within the amorphous regions of cellulose. This generates additional chain ends, which increases the activity of exoglucanases in a synergistic manner.

β-glucosidases

Enzymes that hydrolyse cellobiose and the oligomeric degradation products of cellulose (such as cellotriose and cellotetraose).

Glycoside hydrolase family

(GHF). A family of glycosidases or related enzymes. There are more than 130 different GHFs, and many of them comprise enzymes that are involved in the digestion of plant fibre (for example, cellulases, hemicellulases, pectinases and carbohydrate esterases).

Cellobiohydrolases

Cellulases that act unidirectionally from the ends of the cellulose chain (and thus are exoglucanases), yielding cellobiose as a product; they are more active than endoglucanases against crystalline cellulose.

Cellulosomes

Extracellular multi-enzyme complexes of anaerobic cellulolytic bacteria that are composed of cellulases, other glycoside hydrolases and carbohydrate-binding modules, which are held together and adhere to the cell surface via scaffold proteins that have cohesin and dockerin domains.

Fenton reactions

Iron-mediated reactions in which hydroxyl radicals are formed (Fe2+ + H2O2 → Fe3+ + HO· + HO). These non-selectively oxidize many organic compounds.

Proctodeal trophallaxis

A social behaviour of termites, which solicit and imbibe droplets of hindgut fluid from nestmates.

nifH genes

Genes that encode the catalytic subunit of nitrogenase reductase; they are commonly used as a molecular marker for studying the diversity and community structure of nitrogen-fixing bacteria (also known as diazotrophs).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12, 168–180 (2014). https://doi.org/10.1038/nrmicro3182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing