Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine

Key Points

  • The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) have had key roles throughout mammalian evolution in the regulation of complex social cognition and behaviours, such as attachment, social exploration, recognition and aggression, as well as anxiety, fear conditioning and fear extinction.

  • The goal of this Review is to assess the OXT and AVP systems in the human brain from a translational viewpoint with regard to social behaviour, genetics, neuroimaging, neuroendocrinology and clinical studies.

  • Neuropeptides can be non-invasively delivered to the human brain using intranasal administration, with clear behavioural- and neural systems-level consequences.

  • Following intranasal administration, OXT improves emotion recognition, enhances gaze to the eye region, promotes trust and prosocial behaviour, and reduces behavioural and endocrine responses to social stress.

  • In initial studies, intranasal administration of AVP seems to influence social communication and increase reactivity to social stress.

  • Common genetic risk variants in the genes that encode the brain receptors for OXT and AVP have been associated with autism and social behavioural phenotypes in humans.

  • Imaging genetics studies show that genetic risk variants in the brain receptors for OXT and AVP affect the structure and function of key regions for social behaviour, including the amygdala, anterior cingulate cortex and hypothalamus.

  • Functional neuroimaging studies using intranasal application of neuropeptides support the view that the effects of OXT and AVP on social processing are mediated by limbic circuitry with the amygdala as a core structure.

  • Recent studies have begun to provide evidence for impaired functioning of OXT and AVP in mental disorders that are characterized by early attachment disruption or social interaction pathology — for example, autism, social anxiety disorder, borderline personality disorder and schizophrenia — thereby providing new translational dimensions for novel pharmacological interventions in the neuropeptide system.

  • We suggest that the key route to translational success is a synergistic combination of OXT administration (including selective and longer-acting OXT receptor agonists) with psychotherapy; a 'propsychotherapeutic' neuropharmacological approach that could be referred to as 'psychobiological therapy'.

Abstract

The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are evolutionarily highly conserved mediators in the regulation of complex social cognition and behaviour. Recent studies have investigated the effects of OXT and AVP on human social interaction, the genetic mechanisms of inter-individual variation in social neuropeptide signalling and the actions of OXT and AVP in the human brain as revealed by neuroimaging. These data have advanced our understanding of the mechanisms by which these neuropeptides contribute to human social behaviour. OXT and AVP are emerging as targets for novel treatment approaches — particularly in synergistic combination with psychotherapy — for mental disorders characterized by social dysfunction, such as autism, social anxiety disorder, borderline personality disorder and schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurophysiology of OXT and AVP.
Figure 2: Genetic risk variants in the gene for vasopressin receptor 1A and the oxytocin receptor.
Figure 3: A proposed regulatory circuit of social–emotional information processing in humans.
Figure 4: Intranasal OXT and AVP administration influences the amygdala–cingulate circuit.
Figure 5: An integrative translational model of the interactions of OXT, AVP, social approach behaviour and social stress.

Similar content being viewed by others

References

  1. Heinrichs, M., von Dawans, B. & Domes, G. Oxytocin, vasopressin, and human social behavior. Front. Neuroendocrinol. 30, 548–557 (2009). This conceptual paper is the first attempt to provide an integrative framework that bridges the interactions of oxytocin, social approach behaviour and social stress to the translational approach of psychobiological therapy.

    Article  CAS  PubMed  Google Scholar 

  2. Insel, T. R. & Young, L. J. The neurobiology of attachment. Nature Rev. Neurosci. 2, 129–136 (2001).

    Article  CAS  Google Scholar 

  3. Winslow, J. T. & Insel, T. R. Neuroendocrine basis of social recognition. Curr. Opin. Neurobiol. 14, 248–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J. & Neumann, I. D. Brain oxytocin correlates with maternal aggression: link to anxiety. J. Neurosci. 25, 6807–6815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCarthy, M. M., McDonald, C. H., Brooks, P. J. & Goldman, D. An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol. Behav. 60, 1209–1215 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Appenrodt, E., Schnabel, R. & Schwarzberg, H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol. Behav. 64, 543–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Liebsch, G., Wotjak, C. T., Landgraf, R. & Engelmann, M. Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci. Lett. 217, 101–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Stoehr, J. D., Cramer, C. P. & North, W. G. Oxytocin and vasopressin hexapeptide fragments have opposing influences on conditioned freezing behavior. Psychoneuroendocrinology 17, 267–271 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ibragimov, R. Influence of neurohypophyseal peptides on the formation of active avoidance conditioned reflex behavior. Neurosci. Behav. Physiol. 20, 189–193 (1990).

    Article  PubMed  Google Scholar 

  10. Born, J. et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neurosci. 5, 514–516 (2002). A landmark paper describing how intranasally administered neuropeptides achieve direct access to the cerebrospinal fluid in humans.

    Article  CAS  PubMed  Google Scholar 

  11. Insel, T. R. Social anxiety: from laboratory studies to clinical practice. Biol. Psychiatry 51, 1–3 (2002).

    Article  PubMed  Google Scholar 

  12. Zak, P. J., Kurzban, R. & Matzner, W. T. Oxytocin is associated with human trustworthiness. Horm. Behav. 48, 522–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Grewen, K. M., Girdler, S. S., Amico, J. & Light, K. C. Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact. Psychosom. Med. 67, 531–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, S. E. et al. Relation of oxytocin to psychological stress responses and hypothalamic-pituitary-adrenocortical axis activity in older women. Psychosom. Med. 68, 238–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Scantamburlo, G. et al. Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 32, 407–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cyranowski, J. M. et al. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med. 70, 967–975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kéri, S., Kiss, I. & Kelemen, O. Sharing secrets: oxytocin and trust in schizophrenia. Soc. Neurosci. 4, 287–293 (2009).

    Article  PubMed  Google Scholar 

  18. Goldman, M., Marlow-O'Connor, M., Torres, I. & Carter, C. S. Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr. Res. 98, 247–255 (2008).

    Article  PubMed  Google Scholar 

  19. Green, L. et al. Oxytocin and autistic disorder: alterations in peptide forms. Biol. Psychiatry 50, 609–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Heinrichs, M. & Domes, G. Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. Prog. Brain Res. 170, 337–350 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Landgraf, R. & Neumann, I. D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Horvat-Gordon, M., Granger, D. A., Schwartz, E. B., Nelson, V. J. & Kivlighan, K. T. Oxytocin is not a valid biomarker when measured in saliva by immunoassay. Physiol. Behav. 84, 445–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Carter, C. S. et al. Oxytocin: behavioral associations and potential as a salivary biomarker. Ann. NY Acad. Sci. 1098, 312–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, G. M. Report of altered urinary oxytocin and AVP excretion in neglected orphans should be reconsidered. J. Autism Dev. Disord. 36, 829–830 (2006).

    Article  PubMed  Google Scholar 

  25. Beckwith, B. E., Couk, D. I. & Till, T. S. Vasopressin analog influences the performance of males on a reaction time task. Peptides 4, 707–709 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Jennings, J. R., Nebes, R. D. & Reynolds, C. F. Vasopressin peptide (DDAVP) may narrow the focus of attention in normal elderly. Psychiatry Res. 17, 31–39 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Born, J., Pietrowsky, R. & Fehm, H. L. Neuropsychological effects of vasopressin in healthy humans. Prog. Brain Res. 119, 619–643 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Born, J., Fehm-Wolfsdorf, G., Lutzenberger, W., Voigt, K. H. & Fehm, H. L. Vasopressin and electrophysiological signs of attention in man. Peptides 7, 189–193 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Fehm-Wolfsdorf, G., Born, J., Voigt, K. H. & Fehm, H. L. Human memory and neurohypophyseal hormones: opposite effects of vasopressin and oxytocin. Psychoneuroendocrinology 9, 285–292 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The 'Trier Social Stress Test' — a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Heinrichs, M., Baumgartner, T., Kirschbaum, C. & Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry 54, 1389–1398 (2003). This is the first study to show that intranasal oxytocin enhances the anxiolytic and stress-protective effects of positive social interaction in humans ('social buffering').

    Article  CAS  PubMed  Google Scholar 

  32. Ditzen, B. et al. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry 65, 728–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Young, L. J. & Wang, Z. The neurobiology of pair bonding. Nature Neurosci. 7, 1048–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Altemus, M., Deuster, P. A., Galliven, E., Carter, C. S. & Gold, P. W. Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J. Clin. Endocrinol. Metab. 80, 2954–2959 (1995).

    CAS  PubMed  Google Scholar 

  35. Heinrichs, M. et al. Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J. Clin. Endocrinol. Metab. 86, 4798–4804 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. de Oliveira, D. C., Zuardi, A. W., Graeff, F. G., Queiroz, R. H. & Crippa, J. A. Anxiolytic-like effect of oxytocin in the simulated public speaking test. J. Psychopharmacol. 9 May 2011 (doi:10.1177/0269881111400642).

    Article  CAS  PubMed  Google Scholar 

  37. Quirin, M., Kuhl, J. & Dusing, R. Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinology 36, 898–904 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Meinlschmidt, G. & Heim, C. Sensitivity to intranasal oxytocin in adult men with early parental separation. Biol. Psychiatry 61, 1109–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Norman, G. J. et al. Oxytocin increases autonomic cardiac control: moderation by loneliness. Biol. Psychol. 86, 174–180 (2011).

    Article  PubMed  Google Scholar 

  40. Gamer, M. & Buchel, C. Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology 8 Jun 2011 (doi:10.1016/j.psyneuen.2011.05.007).

    Article  CAS  PubMed  Google Scholar 

  41. Selten, J. P. & Cantor-Graae, E. Social defeat: risk factor for schizophrenia? Br. J. Psychiatry 187, 101–102 (2005).

    Article  PubMed  Google Scholar 

  42. Axelrod, J. & Reisine, T. D. Stress hormones: their interaction and regulation. Science 224, 452–459 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Ebstein, R. P. et al. Arginine vasopressin and oxytocin modulate human social behavior. Ann. NY Acad. Sci. 1167, 87–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Shalev, I. et al. Vasopressin needs an audience: neuropeptide elicited stress responses are contingent upon perceived social evaluative threats. Horm. Behav. 60, 121–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The “Reading the Mind in the Eyes” Test. revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child. Psychol. Psychiatry 42, 241–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S. C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry 61, 731–733 (2007). This work shows that intranasal OXT administration increases the ability to 'read the mind' of other individuals — that is, to infer their mental state by interpreting subtle social cues.

    Article  CAS  PubMed  Google Scholar 

  48. Marsh, A. A., Yu, H. H., Pine, D. S. & Blair, R. J. Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology 209, 225–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Di Simplicio, M., Massey-Chase, R., Cowen, P. & Harmer, C. Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J. Psychopharmacol. 23, 241–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Evans, S., Shergill, S. S. & Averbeck, B. B. Oxytocin decreases aversion to angry faces in an associative learning task. Neuropsychopharmacology 35, 2502–2509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer-Shofty, M., Shamay-Tsoory, S. G., Harari, H. & Levkovitz, Y. The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia 48, 179–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Unkelbach, C., Guastella, A. J. & Forgas, J. P. Oxytocin selectively facilitates recognition of positive sex and relationship words. Psychol. Sci. 19, 1092–1094 (2008).

    Article  PubMed  Google Scholar 

  53. Guastella, A. J., Carson, D. S., Dadds, M. R., Mitchell, P. B. & Cox, R. E. Does oxytocin influence the early detection of angry and happy faces? Psychoneuroendocrinology 34, 220–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Schulze, L. et al. Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology 3 Jun 2011 (doi:10.1016/j.psyneuen.2011.03.011).

    Article  CAS  PubMed  Google Scholar 

  55. Bartz, J. A. et al. Oxytocin selectively improves empathic accuracy. Psychol. Sci. 21, 1426–1428 (2010).

    Article  PubMed  Google Scholar 

  56. Hurlemann, R. et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 30, 4999–5007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singer, T. et al. Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain. Emotion 8, 781–791 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rockliff, H. et al. Effects of intranasal oxytocin on 'compassion focused imagery'. Emotion 27 Jun 2011 (doi:10.1037/a0023861).

    Article  PubMed  Google Scholar 

  59. Buchheim, A. et al. Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology 34, 1417–1422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ditzen, B. et al. Adult attachment and social support interact to reduce psychological but not cortisol responses to stress. J. Psychosom Res. 64, 479–486 (2008).

    Article  PubMed  Google Scholar 

  61. Adolphs, R. Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behav. Cogn. Neurosci. Rev. 1, 21–62 (2002).

    Article  PubMed  Google Scholar 

  62. Domes, G. et al. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35, 83–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Andari, E. et al. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl Acad. Sci. USA 107, 4389–4394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guastella, A. J., Mitchell, P. B. & Dadds, M. R. Oxytocin increases gaze to the eye region of human faces. Biol. Psychiatry 63, 3–5 (2008). This study investigated the effects of intranasal OXT on facial processing. OXT increased gaze (the number of fixations and total gaze time) specifically towards the eye region of human faces, compared to a placebo.

    Article  CAS  PubMed  Google Scholar 

  65. Gamer, M., Zurowski, B. & Buchel, C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl Acad. Sci. USA 107, 9400–9405 (2010). This study used high-resolution fMRI to investigate valence-related and attentional effects of OXT on amygdala subregions in humans. Intranasal OXT had differential effects, attenuating activation in lateral and dorsal regions of the anterior amygdala for fearful faces but enhancing activity for happy expressions, suggesting a shift of processing focus toward positive social stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heinrichs, M., Meinlschmidt, G., Wippich, W., Ehlert, U. & Hellhammer, D. H. Selective amnesic effects of oxytocin on human memory. Physiol. Behav. 83, 31–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Savaskan, E., Ehrhardt, R., Schulz, A., Walter, M. & Schachinger, H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33, 368–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Guastella, A. J., Mitchell, P. B. & Mathews, F. Oxytocin enhances the encoding of positive social memories in humans. Biol. Psychiatry 64, 256–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Rimmele, U., Hediger, K., Heinrichs, M. & Klaver, P. Oxytocin makes a face in memory familiar. J. Neurosci. 29, 38–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartz, J. A. et al. Effects of oxytocin on recollections of maternal care and closeness. Proc. Natl Acad. Sci. USA 107, 21371–21375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guastella, A. J., Kenyon, A. R., Alvares, G. A., Carson, D. S. & Hickie, I. B. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry 67, 1220–1222 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Guastella, A. J., Kenyon, A. R., Unkelbach, C., Alvares, G. A. & Hickie, I. B. Arginine Vasopressin selectively enhances recognition of sexual cues in male humans. Psychoneuroendocrinology 36, 294–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005). This seminal study shows that intranasal administration of OXT causes a substantial increase in trust among humans. Notably, the effect of OXT on trust is not due to a general increase in the readiness to bear risks; on the contrary, OXT specifically affects an individual's willingness to accept social risks arising through interpersonal interactions.

    Article  CAS  PubMed  Google Scholar 

  74. Mikolajczak, M. et al. Oxytocin makes people trusting, not gullible. Psychol. Sci. 21, 1072–1074 (2010).

    Article  PubMed  Google Scholar 

  75. Mikolajczak, M., Pinon, N., Lane, A., de Timary, P. & Luminet, O. Oxytocin not only increases trust when money is at stake, but also when confidential information is in the balance. Biol. Psychol. 85, 182–184 (2010).

    Article  PubMed  Google Scholar 

  76. Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U. & Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 58, 639–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Declerck, C. H., Boone, C. & Kiyonari, T. Oxytocin and cooperation under conditions of uncertainty: the modulating role of incentives and social information. Horm. Behav. 57, 368–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Theodoridou, A., Rowe, A. C., Penton-Voak, I. S. & Rogers, P. J. Oxytocin and social perception: oxytocin increases perceived facial trustworthiness and attractiveness. Horm. Behav. 56, 128–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Zak, P. J., Stanton, A. A. & Ahmadi, S. Oxytocin increases generosity in humans. PLoS ONE 2, e1128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Dreu, C. K. et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328, 1408–1411 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S. & Handgraaf, M. J. Oxytocin promotes human ethnocentrism. Proc. Natl Acad. Sci. USA 108, 1262–1266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, F. S., Kumsta, R. & Heinrichs, M. Oxytocin and intergroup relations: goodwill is not a fixed pie. Proc. Natl Acad. Sci. USA 108, e45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shamay-Tsoory, S. G. et al. Intranasal administration of oxytocin increases envy and schadenfreude (gloating). Biol. Psychiatry 66, 864–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Alvares, G. A., Hickie, I. B. & Guastella, A. J. Acute effects of intranasal oxytocin on subjective and behavioral responses to social rejection. Exp. Clin. Psychopharmacol. 18, 316–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Naber, F., van Ijzendoorn, M. H., Deschamps, P., van Engeland, H. & Bakermans-Kranenburg, M. J. Intranasal oxytocin increases fathers' observed responsiveness during play with their children: a double-blind within-subject experiment. Psychoneuroendocrinology 35, 1583–1586 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Burri, A., Heinrichs, M., Schedlowski, M. & Kruger, T. H. The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology 33, 591–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Thompson, R., Gupta, S., Miller, K., Mills, S. & Orr, S. The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology 29, 35–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Thompson, R. R., George, K., Walton, J. C., Orr, S. P. & Benson, J. Sex-specific influences of vasopressin on human social communication. Proc. Natl Acad. Sci. USA 103, 7889–7894 (2006). This study shows that AVP has different effects on human social communication in men and women. In men, AVP stimulated agonistic facial motor patterns in response to the faces of unfamiliar men, with decreased perceptions of the friendliness of these faces; in women, AVP stimulated affiliative facial motor patterns in response to unfamiliar female faces and increased perceptions of the friendliness of these faces.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kéri, S. & Benedek, G. Oxytocin enhances the perception of biological motion in humans. Cogn. Affect Behav. Neurosci. 9, 237–241 (2009).

    Article  PubMed  Google Scholar 

  90. Norman, G. J. et al. Selective influences of oxytocin on the evaluative processing of social stimuli. J. Psychopharmacol. 24 May 2010 (doi:10.1177/0269881110367452).

    Article  CAS  PubMed  Google Scholar 

  91. Scourfield, J., Martin, N., Lewis, G. & McGuffin, P. Heritability of social cognitive skills in children and adolescents. Br. J. Psychiatry 175, 559–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Knafo, A. & Plomin, R. Prosocial behavior from early to middle childhood: genetic and environmental influences on stability and change. Dev. Psychol. 42, 771–786 (2006).

    Article  PubMed  Google Scholar 

  93. Hoekstra, R. A., Bartels, M., Verweij, C. J. & Boomsma, D. I. Heritability of autistic traits in the general population. Arch. Pediatr. Adolesc. Med. 161, 372–377 (2007).

    Article  PubMed  Google Scholar 

  94. Yrigollen, C. M. et al. Genes controlling affiliative behavior as candidate genes for autism. Biol. Psychiatry 63, 911–916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Inoue, T. et al. Structural organization of the human oxytocin receptor gene. J. Biol. Chem. 269, 32451–32456 (1994).

    CAS  PubMed  Google Scholar 

  96. Gimpl, G. & Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Roper, J., O'Carroll, A. M., Young, W. & Lolait, S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress 14, 98–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Griebel, G. et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl Acad. Sci. USA 99, 6370–6375 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dempster, E. L. et al. Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch. Gen. Psychiatry 64, 1189–1195 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. van West, D. et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol. Psychiatry 9, 287–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Keck, M. E. et al. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1196–1204 (2008).

    Article  PubMed  Google Scholar 

  102. McCauley, J. L. et al. Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med. Genet. 6, 1 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jacob, S. et al. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett. 417, 6–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ylisaukko-oja, T. et al. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Ann. Neurol. 59, 145–155 (2006).

    Article  PubMed  Google Scholar 

  105. Wu, S. et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 58, 74–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Wermter, A. K. et al. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 629–639 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Lerer, E. et al. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol. Psychiatry 13, 980–988 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Hollander, E. et al. Oxytocin increases retention of social cognition in autism. Biol. Psychiatry 61, 498–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Hollander, E. et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 28, 193–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Guastella, A. J. et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 67, 692–694 (2010). This is the first study that investigated the effects of a single dose of intranasal OXT on emotion recognition in young people with ASD. Specifically, OXT improved performance in a mind-reading task, particularly in younger participants aged 12 to 15.

    Article  CAS  PubMed  Google Scholar 

  111. Thibonnier, M. et al. Study of V1-vascular vasopressin receptor gene microsatellite polymorphisms in human essential hypertension. J. Mol. Cell. Cardiol. 32, 557–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Yirmiya, N. et al. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry 11, 488–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Wassink, T. H. et al. Examination of AVPR1a as an autism susceptibility gene. Mol. Psychiatry 9, 968–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, S. J. et al. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol. Psychiatry 7, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H. & Young, L. J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Mabry, K. E., Streatfeild, C. A., Keane, B. & Solomon, N. G. Avpr1a length polymorphism is not associated with either social or genetic monogamy in free-living prairie voles. Anim. Behav. 81, 11–18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hammock, E. A. & Young, L. J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Jin, D. et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446, 41–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Munesue, T. et al. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci. Res. 67, 181–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Lerer, E. et al. Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study. Autism Res. 3, 293–302 (2010).

    Article  PubMed  Google Scholar 

  121. Riebold, M. et al. all-trans-Retinoic-Acid (ATRA) upregulates reduced CD38 transcription in lymphoblastoid cell lines from autism spectrum disorder. Mol. Med. 25 Apr 2011 (doi:110.2119/molmed.2011.00080).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ebstein, R. P., Mankuta, D., Yirmiya, N. & Malavasi, F. Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett. 585, 1529–1536 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Bakermans-Kranenburg, M. J. & van Ijzendoorn, M. H. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect Neurosci. 3, 128–134 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P. & Keltner, D. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc. Natl Acad. Sci. USA 106, 21437–21441 (2009). This work shows that healthy carriers of a risk variant for autism in the OXTR gene have lower empathy and higher stress reactivity, and therefore exhibit key behavioural features that are also found in ASD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tost, H. et al. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl Acad. Sci. USA 107, 13936–13941 (2010). In this study, the authors show that common genetic variants in OXTR that have been associated with autism, are also linked to variations in hypothalamic, amygala and cingulate structure and function in healthy subjects. This is consistent with findings in autism and overlaps with a previously defined circuit for genetic risk for mental disorders in the context of environmental adversity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lucht, M. J. et al. Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog. Neuropsychopharmacol Biol. Psychiatry 33, 860–866 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Israel, S. et al. The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task. PLoS ONE 4, e5535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thompson, R. J., Parker, K. J., Hallmayer, J. F., Waugh, C. E. & Gotlib, I. H. Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36, 144–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Prichard, Z. M., Mackinnon, A. J., Jorm, A. F. & Easteal, S. AVPR1A and OXTR polymorphisms are associated with sexual and reproductive behavioral phenotypes in humans. Mutation in brief no. 981. Online. Hum. Mutat. 28, 1150 (2007).

    Article  PubMed  Google Scholar 

  130. Apicella, C. L. et al. No association between oxytocin receptor (OXTR) gene polymorphisms and experimentally elicited social preferences. PLoS ONE 5, e11153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Knafo, A. et al. Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes Brain Behav. 7, 266–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Bachner-Melman, R. et al. AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 1, e42 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K. & Jarvela, I. Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE 4, e5534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Walum, H. et al. Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc. Natl Acad. Sci. USA 105, 14153–14156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Meyer-Lindenberg, A. et al. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol. Psychiatry 14, 968–975 (2009). This is the first study to investigate the effects of genetic variations linked to autism on the human brain, and shows that these variations are associated with amygdala activity and with personality scores that mirror findings in patients with autism.

    Article  CAS  PubMed  Google Scholar 

  136. Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Goossens, L. et al. Selective processing of social stimuli in the superficial amygdala. Hum. Brain Mapp. 30, 3332–3338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dalton, K. M., Nacewicz, B. M., Alexander, A. L. & Davidson, R. J. Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biol. Psychiatry 61, 512–520 (2007).

    Article  PubMed  Google Scholar 

  139. Dalton, K. M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nature Neurosci. 8, 519–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Hadjikhani, N., Joseph, R. M., Snyder, J. & Tager-Flusberg, H. Abnormal activation of the social brain during face perception in autism. Hum. Brain Mapp. 28, 441–449 (2007).

    Article  PubMed  Google Scholar 

  141. Bookheimer, S. Y., Wang, A. T., Scott, A., Sigman, M. & Dapretto, M. Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing. J. Int. Neuropsychol. Soc. 14, 922–932 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Levin, R. et al. Association between arginine vasopressin 1a receptor (AVPR1a) promoter region polymorphisms and prepulse inhibition. Psychoneuroendocrinology 34, 901–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Inoue, H. et al. Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biol. Psychiatry 68, 1066–1072 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Furman, D. J., Chen, M. C. & Gotlib, I. H. Variant in oxytocin receptor gene is associated with amygdala volume. Psychoneuroendocrinology 36, 891–897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. de Vries, G. J. Sex differences in vasopressin and oxytocin innervation of the brain. Prog. Brain Res. 170, 17–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Bale, T. L., Pedersen, C. A. & Dorsa, D. M. CNS oxytocin receptor mRNA expression and regulation by gonadal steroids. Adv. Exp. Med. Biol. 395, 269–280 (1995).

    CAS  PubMed  Google Scholar 

  148. Akaishi, T. & Sakuma, Y. Estrogen excites oxytocinergic, but not vasopressinergic cells in the paraventricular nucleus of female rat hypothalamus. Brain Res. 335, 302–305 (1985).

    Article  CAS  PubMed  Google Scholar 

  149. Young, L. J., Wang, Z., Donaldson, R. & Rissman, E. F. Estrogen receptor α is essential for induction of oxytocin receptor by estrogen. Neuroreport 9, 933–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Baskerville, T. A., Allard, J., Wayman, C. & Douglas, A. J. Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 30, 2151–2164 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Smeltzer, M. D., Curtis, J. T., Aragona, B. J. & Wang, Z. Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci. Lett. 394, 146–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Montag, C., Fiebach, C. J., Kirsch, P. & Reuter, M. Interaction of 5-HTTLPR and a variation on the oxytocin receptor gene influences negative emotionality. Biol. Psychiatry 69, 601–603 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Munafo, M. R., Brown, S. M. & Hariri, A. R. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol. Psychiatry 63, 852–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lederbogen, F. et al. City living and urban upbringing impact neural social stress processing in humans. Nature 474, 498–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Young, L. J. The neuroendocrinology of the social brain. Front. Neuroendocrinol. 30, 425–428 (2009).

    Article  PubMed  Google Scholar 

  158. Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005). The first evidence showing that intranasal OXT reduced activation of the amygdala and the coupling of the amygdala to brainstem regions that are implicated in autonomic and behavioural manifestations of fear in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hariri, A. R., Mattay, V. S., Tessitore, A., Fera, F. & Weinberger, D. R. Neocortical modulation of the amygdala response to fearful stimuli. Biol. Psychiatry 53, 494–501 (2003).

    Article  PubMed  Google Scholar 

  160. Domes, G. et al. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry 62, 1187–1190 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Petrovic, P., Kalisch, R., Singer, T. & Dolan, R. J. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J. Neurosci. 28, 6607–6615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Skuse, D. H. & Gallagher, L. Dopaminergic-neuropeptide interactions in the social brain. Trends Cogn. Sci. 13, 27–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Gamer, M. & Buchel, C. Amygdala activation predicts gaze toward fearful eyes. J. Neurosci. 29, 9123–9126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ignashchenkova, A., Dicke, P. W., Haarmeier, T. & Thier, P. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neurosci. 7, 56–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Adolphs, R. Cognitive neuroscience of human social behaviour. Nature Rev. Neurosci. 4, 165–178 (2003).

    Article  CAS  Google Scholar 

  167. Zink, C. F., Stein, J. L., Kempf, L., Hakimi, S. & Meyer-Lindenberg, A. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J. Neurosci. 30, 7017–7022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zink, C. F. et al. Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans. Transl. Psychiatry 1, e3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kang, Y. S. & Park, J. H. Brain uptake and the analgesic effect of oxytocin--its usefulness as an analgesic agent. Arch. Pharm. Res. 23, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Griebel, G., Stemmelin, J., Gal, C. S. & Soubrie, P. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr. Pharm. Des 11, 1549–1559 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Ferris, C. F. et al. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol. Biochem. Behav. 83, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Schüle, C., Baghai, T. C., Eser, D. & Rupprecht, R. Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev. Neurother. 9, 1005–1019 (2009).

    Article  PubMed  Google Scholar 

  173. Decaux, G., Soupart, A. & Vassart, G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 371, 1624–1632 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Bartz, J. A. & Hollander, E. Oxytocin and experimental therapeutics in autism spectrum disorders. Prog. Brain Res. 170, 451–462 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Kessler, R. C. et al. Lifetime and 12-month prevalence of DSM-III-R. psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 8–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  176. Guastella, A. J., Howard, A. L., Dadds, M. R., Mitchell, P. & Carson, D. S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 34, 917–923 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Labuschagne, I. et al. Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 35, 2403–2413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Stanley, B. & Siever, L. J. The interpersonal dimension of borderline personality disorder: toward a neuropeptide model. Am. J. Psychiatry 167, 24–39 (2010).

    Article  PubMed  Google Scholar 

  179. Simeon, D. et al. Oxytocin administration attenuates stress reactivity in borderline personality disorder: a pilot study. Psychoneuroendocrinology 3 May 2011 (doi:10.1016/j.psyneuen.2011.03.013).

    Article  CAS  PubMed  Google Scholar 

  180. Bartz, J. et al. Oxytocin can hinder trust and cooperation in borderline personality disorder. Soc. Cogn. Affect. Neurosci. 29 Nov 2010 (doi:10.1093/scan/nsq085).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Feifel, D. & Reza, T. Oxytocin modulates psychotomimetic-induced deficits in sensorimotor gating. Psychopharmacology 141, 93–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Feifel, D. et al. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry 68, 678–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Goldman, M. B., Gomes, A. M., Carter, C. S. & Lee, R. Divergent effects of two different doses of intranasal oxytocin on facial affect discrimination in schizophrenic patients with and without polydipsia. Psychopharmacology 216, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Loup, F., Tribollet, E., Dubois-Dauphin, M. & Dreifuss, J. J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res. 555, 220–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  185. Meyer-Lindenberg, A. Impact of prosocial neuropeptides on human brain function. Prog. Brain Res. 170, 463–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Ludwig, M. & Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nature Rev. Neurosci. 7, 126–136 (2006).

    Article  CAS  Google Scholar 

  187. Tost, H. & Meyer-Lindenberg, A. I fear for you: a role for serotonin in moral behavior. Proc. Natl Acad. Sci. USA 107, 17071–17072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M.-L. gratefully acknowledges grant support from the Deutsche Forschungsgemeinschaft (DFG; SFB 636), Bundesministerium für Bildung und Forschung (BMBF; NGFN-MooDs, Bernstein-Programme), European Union (NEWMEDS, OPTIMIZE and EU-GEI) and National Alliance for Research on Schizophrenia and Depression (NARSAD; Distinguished Investigator Award) during the preparation of this manuscript. M.H. gratefully acknowledges grant support from the Swiss National Science Foundation (SNSF) and DFG. G.D. gratefully acknowledges grant support from the DFG (Do1312/2-1). The work of P.K. on this manuscript was partly supported by a grant from the DFG (KI576/10-1). The authors thank F. S. Chen and M. Sibold for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Meyer-Lindenberg or Markus Heinrichs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Overview of intranasal OXT administration studies in humans. (PDF 235 kb)

Supplementary information S2 (table)

Overview of intranasal AVP administration studies in humans. (PDF 169 kb)

Related links

Related links

FURTHER INFORMATION

Andreas Meyer-Lindenberg's and Peter Kirsch's homepage

Markus Heinrichs' and Gregor Domes' homepage

ClinicalTrials homepage

Glossary

Event-related brain potentials

Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

Trier Social Stress test

(TSST). A standardized psychosocial laboratory stressor that includes public speaking and mental arithmetic.

Reading the Mind in the Eyes test

Participants are presented with 36 pictures of the eye region of faces and are asked to decide which of four words best describes what the person in the picture is thinking or feeling.

Linkage

A technique for identifying candidate chromosomal regions that underlie a particular trait based on the extent to which that trait is co-inherited with certain genetic markers.

Haplotype

A combination of alleles at different loci in the genome that tend to be inherited together because they show high linkage disequilibrium (often because they are physically close).

Reward dependence

A personality measure that quantifies sociability and the interest in, as well as reliance on, social approval.

Dictator Game

An economic exchange game in which a player (the 'dictator') splits up an asset, such as money, between him- or herself and another player. The amount of money or asset given to the other player is a measure of altruism.

Linkage disequilibrium

The non-random association (that is, correlation) of alleles at two or more loci, so that certain combinations of alleles occur together more frequently than would be expected by chance. This means that a true causative locus might in fact be one that is in linkage disequilibrium with the one that is under investigation in a genetic association study.

Prepulse inhibition of the startle response

Electrophysiological paradigm in which a relatively weak sensory event (the prepulse) is presented 30–500 ms before a strong stimulus, which induces startle. The reduction of the magnitude of the startle response following the prepulse is measured.

Evaluative social stress

A form of social stress that is induced by one's performance being observed and criticized by others.

Emotional face-matching task

An experimental paradigm that is used to evoke emotional responses implicitly by presenting the participants with a task in which they have to match one of two emotional faces to a target face.

Social recognition matching task

An experimental paradigm that is used to evoke social information processing implicitly by presenting the participants with a task in which they have to match one of two socially relevant pictures (faces or scenes) to a target picture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Lindenberg, A., Domes, G., Kirsch, P. et al. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12, 524–538 (2011). https://doi.org/10.1038/nrn3044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing