Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sensory theories of developmental dyslexia: three challenges for research

Abstract

Recent years have seen the publication of a range of new theories suggesting that the basis of dyslexia might be sensory dysfunction. In this Opinion article, the evidence for and against several prominent sensory theories of dyslexia is closely scrutinized. Contrary to the causal claims being made, my analysis suggests that many proposed sensory deficits might result from the effects of reduced reading experience on the dyslexic brain. I therefore suggest that longitudinal studies of sensory processing, beginning in infancy, are required to successfully identify the neural basis of developmental dyslexia. Such studies could have a powerful impact on remediation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent motion detection and visual area 5 activation in dyslexia.
Figure 2: Performance in the visual span task in dyslexia.
Figure 3: Visuospatial cueing tasks.
Figure 4: Examples of linguistic information assessed by auditory theories.

Similar content being viewed by others

References

  1. Ziegler, J. C. & Goswami, U. Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol. Bull. 131, 3–29 (2005).

    Article  PubMed  Google Scholar 

  2. Foresight Mental Capital and Wellbeing Project. Mental Capital and Wellbeing: Final Project Report (The Government Office for Science, 2008).

  3. Giraud, A.-L. & Ramus, F. Neurogenetics and auditory processing in developmental dyslexia. Curr. Opin. Neurobiol. 22, 37–42 (2013).

    Article  CAS  Google Scholar 

  4. Carrion-Castillo, A., Franke, B. & Fisher, S. E. Molecular genetics of dyslexia: an overview. Dyslexia 19, 214–240 (2013).

    Article  PubMed  Google Scholar 

  5. Clark, K. et al. Neuroanatomical precursors of dyslexia identified from pre-reading through age 11. Brain http://dx.doi.org/10.1093/brain/awu229 (2014)

  6. Goswami, U. Why theories about developmental dyslexia require developmental designs. Trends Cogn. Sci. 7, 534–540 (2003).

    Article  PubMed  Google Scholar 

  7. Frost, R. Towards a universal model of reading. Behav. Brain Sci. 35, 263–279 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seymour, P. H. K., Aro, M. & Erskine, J. M. Foundation literacy acquisition in European orthographies. Brit. J. Psychol. 94, 143–174 (2003).

    Article  PubMed  Google Scholar 

  9. Ziegler, J. C. et al. Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychol. Sci. 21, 551–559 (2010).

    Article  PubMed  Google Scholar 

  10. Vellutino, F. R. Dyslexia: Theory and Research (MIT Press, 1979).

    Google Scholar 

  11. Huang, H. S. & Hanley, J. R. Phonological awareness and visual skills in learning to read Chinese and English. Cognition 54, 73–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. McBride-Chang, C. et al. Visual spatial skill: a consequence of learning to read? J. Exp. Child Psychol. 109, 256–262 (2011).

    Article  PubMed  Google Scholar 

  13. The Organisation for Economic Co-operation and Development. Programme for International Student Assessment. OECD [online], (2009).

  14. Snowling, M. J. Dyslexia 2nd edn (Blackwell, 2000).

    Google Scholar 

  15. Swan, D. & Goswami, U. Picture naming deficits in developmental dyslexia: the phonological representations hypothesis. Brain Lang. 56, 334–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kuhl, P. K. Early language acquisition: cracking the speech code. Nature Rev. Neurosci. 5, 831–843 (2004).

    Article  CAS  Google Scholar 

  17. Stanovich, K. E. Matthew effects in reading: some consequences of individual differences in the acquisition of literacy. Read Res. Q. 21, 360–407 (1986).

    Article  Google Scholar 

  18. Mitchell, T. V. & Neville, H. J. Asynchronies in the development of electrophysiological responses to motion and colour. J. Cogn. Neurosci. 16, 1363–1374 (2004).

    Article  PubMed  Google Scholar 

  19. Stein, J. & Walsh, V. To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci. 20, 147–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Lovegrove, W. A., Bowling, A., Badcock, D. & Blackwood, M. Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science 210, 439–440 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Livingstone, M. S., Rosen, G. D., Drislane, F. W. & Galaburda, A. M. Physiological and anatomical evidence for a magnocelluar deficit in developmental dyslexia. Proc. Natl Acad. Sci. USA 88, 7943–7947 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Cornelisson, P., Richardson, A., Mason, A., Fowler, S. & Stein, J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Res. 35, 1483–1494 (1995).

    Article  Google Scholar 

  23. Witton, C. et al. Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Curr. Biol. 8, 791–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kevan, A. & Pammer, K. Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia 47, 3174–3181 (2009).

    Article  PubMed  Google Scholar 

  25. Dehaene, S. et al. Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area. Neuroimage 49, 1837–1848 (2010).

    Article  PubMed  Google Scholar 

  26. Eden, G. et al. Abnormal processing of visual motion in dyslexia revealed by functional neuroimaging. Neuron 21, 279–282 (1996).

    Article  Google Scholar 

  27. Gori, S., Cecchini, P., Bigoni, A., Molteni, M. & Facoetti, A. Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Front. Hum. Neurosci. 8, 460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hutzler, F., Kronbichler, M., Jacobs, A. M. & Wimmer, H. Perhaps correlational but not causal: no effect of dyslexic readers' magnocellular system on their eye movements during reading. Neuropsychologia 44, 637–648 (2006).

    Article  PubMed  Google Scholar 

  29. Boets, B., Wouters, J., van Wieringen, A., De Smedt, B. & Ghesquiere, P. Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain Lang. 106, 29–40 (2008).

    Article  PubMed  Google Scholar 

  30. Sperling, A. J., Lu, Z. L., Manis, F. R. & Seidenberg, M. S. Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neurosci. 8, 862–863 (2006).

    Article  CAS  Google Scholar 

  31. Olulade, O. A., Napoliello, E. M. & Eden, G. F. Abnormal visual motion processing is not a cause of dyslexia. Neuron. 79, 180–190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brand, R. J., Baldwin, D. A. & Ashburn, L. A. Evidence for motionese: modifications in mothers' infant-directed action. Dev. Sci. 5, 72–83 (2002).

    Article  Google Scholar 

  33. Amitay, S., Ben-Yehudah, G., Banai, K. & Ahissar, M. Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain 125, 2272–2285 (2002).

    Article  PubMed  Google Scholar 

  34. Atkinson, J. et al. A specific deficit of dorsal stream function in Williams' syndrome. Neuroreport 8, 1919–1922 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Bosse, M. L., Tainturier, M. J. & Valdois, S. Developmental dyslexia: the visual attention span deficit hypothesis. Cognition 104, 198–230 (2007).

    Article  PubMed  Google Scholar 

  36. Bosse, M. L. & Valdois, S. Influence of the visual attention span on child reading performance: a cross-sectional study. J. Read. Res. 32, 230–253 (2009).

    Article  Google Scholar 

  37. Bosse, M. L. & Valdois, S. Patterns of developmental dyslexia according to a multi-trace memory model of reading. Curr. Psychol. Lett. 10, 1 (2003).

    Google Scholar 

  38. Spinelli, D., De Luca, M., Judica, A. & Zocolotti, P. Crowding effects on word identification in developmental dyslexia. Cortex 38, 179–200 (2002).

    Article  PubMed  Google Scholar 

  39. Zoccolotti, P., De Luca, M., Di Filippo, G. & Martelli, M. Markers of surface developmental dyslexia in a language (Italian) with high grapheme-phoneme correspondence. Appl. Psycholinguist. 20, 191–216 (1999).

    Article  Google Scholar 

  40. Ziegler, J. C. et al. Rapid processing of letters, digits and symbols: what purely visual-attentional deficit in developmental dyslexia? Dev. Sci. 13, F8–F14 (2010).

    Article  PubMed  Google Scholar 

  41. Maurer, U. et al. Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain 130, 3200–3210 (2007).

    Article  PubMed  Google Scholar 

  42. Blau, V. et al. Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain. 133, 868–879 (2010).

    Article  PubMed  Google Scholar 

  43. Fernandes, T., Vale, A. P., Martins, B., Morais, J. & Kolinsky, R. The deficit of letter processing in developmental dyslexia: combining evidence from dyslexics, typical readers and illiterate adults. Dev. Sci. 17, 125–141 (2014).

    Article  PubMed  Google Scholar 

  44. Valdois, S., Lassus-Sangosse, D. & Lobier, M. Impaired letter string processing in developmental dyslexia: what visual-to-phonology code disorder? Dyslexia 18, 77–93 (2012).

    Article  PubMed  Google Scholar 

  45. Zorzi, M. et al. Extra-large letter spacing improves reading in dyslexia. Proc. Natl Acad. Sci. USA 109, 11455–11459 (2012).

    Article  PubMed  Google Scholar 

  46. Facoetti, A. et al. The time course of attentional focusing in dyslexic and normally-reading children. Brain Cogn. 53, 181–184 (2003).

    Article  PubMed  Google Scholar 

  47. Facoetti, A. et al. The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cogn. Neuropsychol. 23, 841–855 (2006).

    Article  PubMed  Google Scholar 

  48. Facoetti, A. et al. Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. J. Cogn. Neurosci. 22, 1011–1025 (2010).

    Article  PubMed  Google Scholar 

  49. Ross-Sheehy, S., Oakes, L. M. & Luck, S. J. Exogenous attention influences visual short-term memory in infants. Dev. Sci. 14, 490–501 (2011).

    Article  PubMed  Google Scholar 

  50. Hari, R., Renvall, H. & Tanskanen, T. Left mini-neglect in dyslexic adults. Brain 124, 1373–1380 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Franceschini, S. et al. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 22, 814–819 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Franceschini, S. et al. Action video games make dyslexic children read better. Curr. Biol. 23, 462–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hawelka, S. & Wimmer, H. Impaired visual processing of multi-element arrays is associated with increased number of eye movements in dyslexic reading. Vision Res. 45, 855–863 (2005).

    Article  PubMed  Google Scholar 

  54. Vidyasagar, T. R. & Pammer, K. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 14, 57–63 (2010).

    Article  PubMed  Google Scholar 

  55. Mehler, J. et al. A precursor of language acquisition in young infants. Cognition. 29, 143–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Telkemeyer, S. et al. Acoustic processing of temporally-modulated sounds in infants: Evidence from a combined NIRS and EEG study. Front. Psychol. 2, 62 (2011).

    PubMed Central  Google Scholar 

  57. Nittrouer, S. & Lowenstein, J. H. Perceptual organization of speech signals by children with and without dyslexia. Res. Dev. Disabil. 34, 2304–2325 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tallal, P. Improving language and literacy is a matter of time. Nature Rev. Neurosci. 5, 721–728 (2004).

    Article  CAS  Google Scholar 

  59. Tallal, P. & Piercy, M. Defects of non-verbal auditory perception in children with developmental aphasia. Nature 241, 468–469 (1973).

    Article  CAS  PubMed  Google Scholar 

  60. Tallal, P. & Piercy, M. Developmental aphasia: rate of auditory processing and selective impairment of consonant perception. Neuropsychologia 12, 83–93 (1974).

    Article  CAS  PubMed  Google Scholar 

  61. Tallal, P. Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang. 9, 182–198 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Marshall, C. M., Snowling, M. J. & Bailey, P. J. Rapid auditory processing and phonological ability in normal readers and readers with dyslexia. J. Speech Lang. Hear. Res. 44, 925–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. McArthur, G. M. & Bishop, D. V. M. Auditory perceptual processing in people with reading and oral language impairments: current issues and recommendations. Dyslexia 7, 150–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Studdert-Kennedy, M. & Mody, M. Auditory temporal perception deficits in the reading-impaired: a critical review of the evidence. Psychon. B. Rev. 2, 508–514 (1995).

    Article  CAS  Google Scholar 

  65. McAnally, K. I., Hansen, P. C., Cornelissen, P. L. & Stein, J. F. Effect of time and frequency manipulation on syllable perception in developmental dyslexics. J. Speech Lang. Hear. Res. 40, 912–924 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioural remediation: evidence from functional MRI. Proc. Natl Acad. Sci. USA 100, 2860–2865 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Gaab, N., Gabrieli, J. E., Deutsch, G. K., Tallal, P. & Temple, E. Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: An fMRI study. Restor. Neurol. Neurosci. 25, 295–310 (2007).

    CAS  PubMed  Google Scholar 

  68. Raschle, N., Chang, M. & Gaab, N. Structural brain alterations associated with dyslexia predate reading onset. Neuroimage 57, 742–749 (2011).

    Article  PubMed  Google Scholar 

  69. Choudray, N. & Benasich, A. A. Maturation of evoked auditory potentials from 6 to 48 months: prediction to 3- and 4-year language and cognitive abilities. Clin. Neurophysiol. 122, 320–338 (2011).

    Article  Google Scholar 

  70. Boets, B. et al. Preschool impairments in auditory processing and speech perception uniquely predict future readings problems. Res. Dev. Disabil. 32, 560–570 (2011).

    Article  PubMed  Google Scholar 

  71. Goswami, U., Fosker, T., Huss, M., Mead, N. & Szucs, D. Rise time and formant transition duration in the discrimination of speech sounds: the Ba–Wa distinction in developmental dyslexia. Dev. Sci. 14, 34–43 (2011).

    Article  PubMed  Google Scholar 

  72. Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D. & Giraud, A.-L. Altered low-γ sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron. 72, 1080–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Boets, B. et al. Intact but less accessible phonetic representations in adults with dyslexia. Science 342, 1251–1254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Serniclaes, W., van Heghe, S., Mousty, P., Carre, R. & Sprenger-Charolles, L. Allophonic mode of speech perception in dyslexia. J. Exp. Child Psychol. 87, 336–361 (2004).

    Article  PubMed  Google Scholar 

  75. Bogliotti, C., Serniclaes, W., Messaoud-Galusi, S. & Sprenger-Charolles, L. Discrimination of speech sounds by children with dyslexia: comparisons with chronological age and reading level controls. J. Exp. Child Psychol. 101, 137–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Goswami, U. et al. Amplitude envelope onsets and developmental dyslexia: a new hypothesis. Proc. Natl Acad. Sci. USA 99, 10911–10916 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci., 15, 3–10 (2011).

    Article  PubMed  Google Scholar 

  78. Leong, V. Prosodic Rhythm in the Speech Amplitude Envelope: Amplitude Modulation Phase Hierarchies (AMPHs) and AMPH Models. Thesis, Univ. Cambridge (2012).

    Google Scholar 

  79. Leong, V. & Goswami, U. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing. Hear. Res. 308, 141–161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Leong, V. & Goswami, U. Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental dyslexia. Front. Hum. Neurosci. http://dx.doi.org/10.3389/fnhum.2014.00096 (2014).

  81. Goswami, U. et al. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. J Cogn. Neurosci. 23, 325–337 (2011).

    Article  PubMed  Google Scholar 

  82. Muneaux, M., Ziegler, J. C., Truc, C., Thomson, J. & Goswami, U. Deficits in beat perception and dyslexia: evidence from French. NeuroReport 15, 1255–1259 (2004).

    Article  PubMed  Google Scholar 

  83. Surányi, Z. et al. Sensitivity to rhythmic parameters in dyslexic children: a comparison of Hungarian and English. Read. Writ. 22, 41–56 (2009).

    Article  Google Scholar 

  84. Hämäläinen, J. A., Leppänen, P. H. T., Guttorm, T. K. & Lyytinen, H. Event-related potentials to pitch and rise time change in children with reading disabilities and typically reading children. Clin. Neurophysiol. 119, 100–115 (2008).

    Article  PubMed  Google Scholar 

  85. Poelmans, H. et al. Reduced sensitivity to slow-rate dynamic auditory information in children with dyslexia. Res. Dev. Disabil. 32, 2810–2819 (2011).

    Article  PubMed  Google Scholar 

  86. Papadopoulos, T. C., Georgiou, G. K. & Parrila, R. K. Low-level deficits in beat perception: neither necessary nor sufficient for explaining developmental dyslexia in a consistent orthography. Res. Dev. Disabil. 33, 1841–1856 (2012).

    Article  PubMed  Google Scholar 

  87. Goswami, U. et al. Impaired perception of syllable stress in children with dyslexia: a longitudinal study. J. Mem. Lang. 69 1, 1–17 (2013).

    Article  Google Scholar 

  88. Kitzen, K. R. Prosodic sensitivity, morphological ability, and reading ability in young adults with and without childhood histories of reading difficulty. Dissertation Abstracts International Section A: Humanities and Social Sciences 62, 460 (2001).

    Google Scholar 

  89. Thomson, J. & Goswami, U. Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J. Physiol. 102, 120–129 (2008).

    Google Scholar 

  90. Goswami, U., Huss, M., Mead, N., Fosker, T. & Verney, J. P. Perception of patterns of musical beat distribution in phonological developmental dyslexia: significant longitudinal relations with word reading and reading comprehension. Cortex 49, 1363–1376 (2013).

    Article  PubMed  Google Scholar 

  91. Huss, M., Verney, J. P., Fosker, T., Mead, N. & Goswami, U. Music, rhythm, rise time perception and developmental dyslexia: perception of musical meter predicts reading and phonology. Cortex 47, 674–689 (2011).

    Article  PubMed  Google Scholar 

  92. Corriveau, K. H., Goswami, U. & Thomson, J. M. Auditory processing and early literacy skills in a preschool and kindergarten population. J. Learn. Disabil. 43, 369–382 (2010).

    Article  PubMed  Google Scholar 

  93. Guttorm, T. K., Leppanen, P. H., Hämäläinen, J. A., Eklund, K. M. & Lyytinen, H. J. Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. J. Learn. Disabil. 43, 391–401 (2010).

    Article  PubMed  Google Scholar 

  94. Leppanen, P. H. T. et al. Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex 46, 1362–1376 (2010).

    Article  PubMed  Google Scholar 

  95. Van Zuijen, T. L., Plakas, A., Maassen, B. A. M., Maurits, N. M. & van der Leij, A. Infants ERPs separate children at risk of dyslexia who become good readers from those who become poor readers. Dev. Sci. 16, 554–563 (2013).

    Article  PubMed  Google Scholar 

  96. Smith, A. B., Lambrecht-Smith, S., Locke, J. L. & Bennett, J. A longitudinal study of speech timing in young children later found to have a reading disability. J. Speech Lang. Hear. Res. 51, 1300–1314 (2008).

    Article  PubMed  Google Scholar 

  97. Thomson, J., Leong, V. & Goswami, U. Auditory processing interventions and developmental dyslexia: a comparison of phonemic and rhythmic approaches. Read. Writ. 26, 139–161 (2013).

    Article  Google Scholar 

  98. Bhide, A., Power, A. J. & Goswami, U. A rhythmic musical intervention for poor readers: a comparison of efficacy with a letter-based intervention. Mind Brain Educ. 7, 1–12 (2013).

    Article  Google Scholar 

  99. Stefanics, G. et al. Auditory sensory deficits in developmental dyslexia, a longitudinal study. Neuroimage 57, 723–732 (2011).

    Article  PubMed  Google Scholar 

  100. Power, A. J., Mead, N., Barnes, L. & Goswami, U. Neural entrainment to rhythmic speech in children with dyslexia. Front. Hum. Neurosci. 7, 777 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. de Santos Loureiro, C. et al. Degree of illiteracy and phonological and metaphonological skills in unschooled adults. Brain Lang. 89, 499–502 (2004).

    Article  Google Scholar 

  102. Schneps, M. H. et al. Shorter lines facilitate reading in those who struggle. PLoS ONE 8, e71161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bradley, L. & Bryant, P. E. Difficulties in auditory organisation as a possible cause of reading backwardness. Nature 271, 746–747 (1978).

    Article  CAS  PubMed  Google Scholar 

  104. Megnin-Viggars, O. & Goswami, U. Audiovisual perception of noise vocoded speech in dyslexic and non-dyslexic adults: the role of low-frequency visual modulations. Brain Lang. 124, 165–173 (2013).

    Article  PubMed  Google Scholar 

  105. Vidyasagar, T. R. Reading into neuronal oscillations in the visual system: implications for developmental dyslexia. Front. Hum. Neurosci. 7, 811 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pammer, K. Temporal sampling in vision and implications for dyslexia. Front. Hum. Neurosci. 7, 933 (2013).

    PubMed  Google Scholar 

  107. Read, C., Zhang, Y.-F., Nie, H.-Y. & Ding, B.-Q. The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition 24, 31–44 (1986).

    Article  CAS  PubMed  Google Scholar 

  108. Read, C. Children's Creative Spelling (Routledge Kegan Paul, 1986).

    Google Scholar 

  109. Ziegler, J. C. & Ferrand, L. Orthography shapes the perception of speech: the consistency effect in auditory word recognition. Psychon. B. Rev. 5, 683–689 (1998).

    Article  Google Scholar 

  110. Goswami, U., Ziegler, J. C. & Richardson, U. The effects of spelling consistency on phonological awareness: a comparison of English and German. J. Exp. Child Psychol. 92, 345–365 (2005).

    Article  PubMed  Google Scholar 

  111. Giraud, A. L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neurosci. 15, 511–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Port, R. How are words stored in memory? Beyond phones and phonemes. New Ideas Psychol. 25, 143–170 (2007).

    Article  Google Scholar 

  113. Greenberg, S. Speaking in shorthand — a syllable-centric perspective for understanding pronunciation variation. Speech Commun. 29, 159–176 (1999).

    Article  Google Scholar 

  114. Goswami, U. & Leong, L. Speech rhythm and temporal structure: converging perspectives? Lab. Phonol. 4, 67–92 (2013).

    Google Scholar 

Download references

Acknowledgements

The author thanks the families and schools participating in research at the Centre for Neuroscience in Education, University of Cambridge, UK, and the Medical Research Council for funding (grants G0400574 and G0902375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Goswami.

Ethics declarations

Competing interests

The author receives funding for studying auditory sensory difficulties in children with dyslexia.

Related links

PowerPoint slides

Glossary

Cortical oscillations

The synchronous firing of neurons in networks of various sizes in different areas of the cortex, producing rhythmic patterns of activity. These oscillatory rhythms have endogenous temporal rates, and can phase-reset their activity to synchronize firing with incoming sensory information, thereby contributing to the processing of the input.

Formant transitions

Rapid changes in frequency (concentrations of acoustic energy within a narrow frequency band in the speech signal) as a speaker transitions from a consonant to a vowel, providing important cues to phonetic identity.

Frequency-doubling illusion

An illusion that depends on the spatial and temporal frequency of a flickering sinusoid grating (a pattern of lighter and darker bars). When a grating with a spatial frequency of 0.1–0.4 cycles per degree flickers faster than 15 Hz, the viewer sees a grating with much narrower lines (that is, the physical spatial frequency appears to double).

Logographically

When the meaning of a symbol is directly recognized without requiring recoding to sound. English logographs include £, % and >.

Magnocellular system

One of two major pathways in the visual system. The magnocellular system contains cells with larger cell bodies than the other (parvocellular) system. Magnocells respond optimally to motion and to visual stimuli that reverse contrast (areas of light versus dark) at lower spatial frequencies and at higher temporal frequencies. Responses are transient and the system is colour-blind.

Mental lexicon

The brain's mental dictionary, containing information about the meaning, pronunciation and grammatical status of words in the spoken language.

Onset-rime division

When a spoken syllable is divided at the vowel or syllable nucleus, the consonant phoneme(s) preceding the vowel are the linguistic onset and the vowel and any subsequent consonant phoneme(s) are the linguistic rime, as in 's-ee', 's-eep', 'sl-eep' and 'sl-ept'.

Orthography

The correct writing system of a language, used here to refer to the chosen symbol–sound correspondence system (such as the Western alphabet, Cyrillic alphabet, Chinese characters or Devanagari).

Phonemes

The smallest units of sound that change a word's meaning.

Phonology

The inventory of the sound system of a language, comprising knowledge of the sounds themselves and the specific patterns or regularities by which sounds in words can be organized.

Posner cueing tasks

A neuropsychology paradigm for measuring spatial attention by cueing a target's future location and measuring whether this cue facilitates target detection. A Posner task usually includes a contrast between valid and invalid cues (only valid cues indicate the future correct location) and endogenous versus exogenous cues (endogenous cues are central to the visual field, whereas exogenous cues are outside the focus of attention or in the periphery).

Saccades

Rapid jerk-like movements of the eyeball that redirect the fovea to a new location in the visual field without a head movement or the conscious awareness of the observer.

Specific language impairment

A developmental disorder of language acquisition that delays the mastery of skills in children who have no hearing loss or other developmental delays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, U. Sensory theories of developmental dyslexia: three challenges for research. Nat Rev Neurosci 16, 43–54 (2015). https://doi.org/10.1038/nrn3836

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing