Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hypocretins: Setting the arousal threshold

Key Points

  • The hypocretins (orexins), Hcrt1 and Hcrt2, are expressed only in a few thousand neurons in the dorsolateral hypothalamus. These secreted peptides are found in both rat and human brain, and a gene for their precursor (preprohypocretin) is also found in pufferfish and frog species. The gene, Hcrt, seems to have arisen by genetic rearrangement of the secretin gene.

  • There are two G-protein-coupled receptors for the hypocretins, Hcrtr1 and Hcrtr2. They have different distributions within the brain and bind the two hypocretin peptides with different affinities. The hypocretin neurons of the hypothalamus project widely to many areas of the brain, consistent with the expression of the hypocretin receptors.

  • The hypocretins are found in dense-core vesicles at synapses and can be neuroexcitatory. They can increase the presynaptic release of neurotransmitters and can also have a postsynaptic effect by opening Ca2+ channels in the plasma membrane.

  • Intracerebroventricular administration of hypocretin in rats increases short-term food consumption, and food deprivation can lead to increased concentrations of hypocretin peptides in the hypothalamus. Although these and other observations point to a function for the hypocretins in the control of feeding, it is unclear whether this is a primary role. Findings that relate to the feeding-related activities of the hypocretins have been inconsistent, and it is possible that their influence on feeding might be indirect, through their effects on arousal.

  • Studies of three colonies of dogs in which narcolepsy was inherited showed that the affected gene in each case was the Hcrtr2 gene. Mice in which the Hcrt gene is inactivated show a marked narcoleptic-like phenotype, whereas knocking out either of the hypocretin receptor genes produces a milder phenotype. Knocking out both receptor genes reproduces the severe Hcrt knockout phenotype. In humans with narcolepsy, concentrations of hypocretins are severely reduced and hypocretin neurons are reduced in number or missing altogether, indicating that human narcolepsy results from degeneration of these neurons, possibly as a result of an autoimmune process.

  • It is clear that the hypocretins are central to the control of sleep and arousal. The hypocretin neurons project to areas involved in these processes, including the ascending reticular activating system, and hypocretin levels fluctuate across the sleep–wake cycle and increase with sleep deprivation. Hypocretin neurons activate brainstem 'REM-off' neurons (which are active during wakefulness but not during rapid eye movement (REM) sleep) during arousal to maintain the awake state, and reduce the activity of 'REM-on' neurons (active during both wakefulness and REM sleep), acting as a gate to entry into REM sleep. A fuller understanding of the functions of the hypocretins and the control of sleep and arousal will aid the treatment of narcolepsy and other sleep disorders.

  • Patients with narcolepsy and animals with mutations in the hypocretin system also show reduced feeding together with increased weight. It is proposed that the effect of the hypocretins on feeding behaviour comes from a 'resetting' of the metabolic 'set point' in patients and animal models in which hypocretin signalling is perturbed. In this model, the hypocretins provide a means by which metabolic needs can influence arousal, rather than being orexigenic or anorexigenic per se.

Abstract

Over a short period in the late 1990s, three groups converged on the discovery of a neuropeptide system, centred in the dorsolateral hypothalamus, that regulates arousal states, influences feeding and is implicated in the sleep disorder narcolepsy. Subsequent studies have illuminated many aspects of the circuitry of the hypocretin (also called orexin) system, which also influences hormone secretion and autonomic homeostasis, and have led to the hypothesis that most human narcolepsies result from an autoimmune attack against the hypocretin-producing neurons. The biochemical, physiological and anatomical components that regulate the switch between waking and sleeping are becoming clear. The rapidity with which the hypocretin story has emerged is a testament to both the conceptual and the technical evolution of genomic science in the past two decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The first glimpse of the hypocretin system.
Figure 2: Preprohypocretin and the hypocretins.
Figure 3: Localization of hypocretin.
Figure 4: Local iontophoretic administration of Hcrt1 to the locus coeruleus stimulates expression of c-Fos in noradrenergic neurons.
Figure 5: Schematic model of neurotransmitter circuits that are involved in the three states of vigilance.

Similar content being viewed by others

References

  1. Gautvik, K. M. et al. Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl Acad. Sci. USA 93, 8733–8738 (1996).The first detection of the mRNA that encodes preprohypocretin in a few thousand neurons in the lateral hypothalamus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).The prediction of two carboxy-terminally amidated peptides, immunohistochemical mapping of the projections of the hypocretin neurons, detection of the peptides in dense-core vesicles at synapses and demonstration that the synthetic, amidated peptides have excitatory electrophysiological activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).The independent discovery of the hypocretins and their two target receptors, detection of the endogenous peptides, determination of their exact structures and demonstration that the peptides stimulate short-term food intake.

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez, C. E. & Sutcliffe, J. G. Hypocretin is an early member of the incretin gene family. Neurosci. Lett. (in the press).

  5. Lee, J. H. et al. Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B. Eur. J. Biochem. 266, 831–839 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Gronenborn, A. M., Bovermann, G. & Clore, G. M. A 1H-NMR study of the solution conformation of secretin. Resonance assignment and secondary structure. FEBS Lett. 215, 88–94 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Trivedi, P., Yu, H., MacNeil, D. J., Van der Ploeg, L. H. T. & Guan, X.-M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Satinoff, E. & Shan, S. Y. Loss of behavioral thermoregulation after lateral hypothalamic lesions in rats. J. Comp. Physiol. Psychol. 77, 302–312 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert, T. M. & Blatteis, C. M. Hypothalamic thermoregulatory pathways in the rat. J. Appl. Physiol. 43, 770–777 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Levitt, D. R. & Teitelbaum, P. Somnolence, akinesia, and sensory activation of motivated behavior in the lateral hypothalamic syndrome. Proc. Natl Acad. Sci. USA 72, 2819–2823 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trojniar, W., Jurkowlaniec, E., Orzel-Gryglewska, J. & Tokarski, J. The effect of lateral hypothalamic lesions on spontaneous EEG pattern in rats. Acta Neurobiol Exp 47, 27–43 (1987). | PubMed |

    CAS  Google Scholar 

  13. Bernardis, L. L. & Bellinger, L. L. The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci. Biobehav. Rev. 17, 141–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Bernardis, L. L. & Bellinger, L. L. The lateral hypothalamic area revisited: ingestive behavior. Neurosci. Biobehav. Rev. 20, 189–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Broberger, C., de Lecea, L., Sutcliffe, J. G. & Hökfelt, T. Hypocretin/orexin-and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402, 460–474 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Elias, C. F. et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459 (1998).References 16–18 and 22 report the first in-depth immunohistochemical descriptions of the vast hypocretin projection fields.

    Article  CAS  PubMed  Google Scholar 

  19. Hakansson, M., de Lecea, L., Sutcliffe, J. G., Yanagisawa, M. & Meister, B. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurons of the lateral hypothalamus. J. Neuroendocrinol. 11, 653–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Chou, T. C. et al. Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21, RC168 (2001).

  21. Abrahamson, E. E., Leak, R. K. & Moore, R. Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Date, Y. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl Acad. Sci. USA 96, 748–753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van den Pol, A. N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moore, R. Y., Abrahamson, E. A. & Van Den Pol, A. The hypocretin neuron system: an arousal system in the human brain. Arch. Ital. Biol. 139, 195–205 (2001).

    CAS  PubMed  Google Scholar 

  25. Horvath, T. L., Diano, S. & Van den Pol, A. N. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J. Neurosci. 19, 1072–1087 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van den Pol, A. N., Gao, X.-B., Obrietan, K., Kilduff, T. S. & Belousov, A. B. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18, 7962–7971 (1998).The first thorough characterization of the electrophysiological properties of the hypocretins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shirasaka, T. et al. Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1114–R1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hagan, J. J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA 96, 10911–10916 (1999).A detailed characterization of the endocrine regulatory effects of the hypocretins and, with reference 108 , the first direct experimental evidence that the hypocretins influence arousal by exciting locus coeruleus neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kukkonen, J. P. & Akerman, K. E. Orexin receptors couple to Ca2+ channels different from store-operated Ca2+ channels. Neuroreport 12, 2017–2020 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Smart, D. et al. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br. J. Pharmacol. 128, 1–3 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uramura, K. et al. Orexin-A activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport 12, 1885–1889 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Randeva, H. S., Karteris, E., Grammatopoulos, D. & Hillhouse, E. W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals, implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab. 86, 4808–4813 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Karteris, E., Randeva, H. S., Grammatopoulos, D. K., Jaffe, R. B. & Hillhouse, E. W. Expression and coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals. J. Clin. Endocrinol. Metab. 86, 4512–4519 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Martin, G., Fabre, V., Siggins, G. R. & de Lecea, L. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul. Pept. 104, 111–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Mondal, M. S. et al. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem. Biophys. Res. Commun. 256, 495–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Dube, M. G., Kalra, S. P. & Kalra, P. S. Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 842, 473–477 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Sartin, J. L. et al. Effect of intracerebroventricular orexin-B on food intake in sheep. J. Anim. Sci. 79, 1573–1577 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto, Y. et al. Down regulation of the prepro-orexin gene expression in genetically obese mice. Brain Res. Mol. Brain Res. 65, 14–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Jain, M. R., Horvath, T. L., Kalra, P. S. & Kalra, S. P. Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul. Pept. 87, 19–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Yamanaka, A. et al. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res. 859, 404–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Beck, B. & Richy, S. Hypothalamic hypocretin/orexin and neuropeptide Y, divergent interaction with energy depletion and leptin. Biochem. Biophys. Res. Commun. 258, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lopez, M. et al. Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem. Biophys. Res. Commun. 269, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Niimi, M., Sato, M. & Taminato, T. Neuropeptide Y in central control of feeding and interactions with orexin and leptin. Endocrine 14, 269–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yamada, H., Okumura, T., Motomura, W., Kobayashi, Y. & Kohgo, Y. Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem. Biophys. Res. Commun. 267, 527–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Lawrence, C. B., Snape, A. C., Baudoin, F. M. & Luckman, S. M. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 143, 155–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Griffond, B., Risold, P. Y., Jacquemard, C., Colard, C. & Fellmann, D. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci. Lett. 262, 77–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Moriguchi, T., Sakurai, T., Nambu, T., Yanagisawa, M. & Goto, K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett. 264, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Bayer, L. et al. Alteration of the expression of the hypocretin (orexin) gene by 2-deoxyglucose in the rat lateral hypothalamic area. Neuroreport 11, 531–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Cai, X. J. et al. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50, 105–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Muroya, S., Uramura, K., Sakurai, T., Takigawa, M. & Yada, T. Lowering glucose concentrations increases cytosolic Ca2+ in orexin neurons of the rat lateral hypothalamus. Neurosci. Lett. 309, 165–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ida, T., Nakahara, K., Katayama, T., Murakami, N. & Nakazato, M. Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 821, 526–529 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lubkin, M. & Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun. 253, 241–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Edwards, C. M. et al. The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J. Endocrinol. 160, R7–R12 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Sweet, D. C., Levine, A. S., Billington, C. J. & Kotz, C. M. Feeding response to central orexins. Brain Res. 821, 535–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Taheri, S., Mahmoodi, M., Opacka-Juffry, J., Ghatei, M. A. & Bloom, S. R. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 457, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Tritos, N. A., Mastaitis, J. W., Kokkotou, E. & Maratos-Flier, E. Characterization of melanin-concentrating hormone and preproorexin expression in the murine hypothalamus. Brain Res. 895, 160–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Swart, I., Overton, J. M. & Houpt, T. A. The effect of food deprivation and experimental diabetes on orexin and NPY mRNA levels. Peptides 22, 2175–2179 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Yoshida, Y. et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light–dark cycle and sleep–wake activities. Eur. J. Neurosci. 14, 1075–1081 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Fujiki, N. et al. Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport 12, 993–997 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Yamanaka, A., Sakurai, T., Katsumoto, T., Yanagisawa, M. & Goto, K. Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res. 849, 248–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Dampney, R. A. L. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74, 323–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Iqbal, J., Pompolo, S., Sakurai, T. & Clarke, I. J. Evidence that orexin-containing neurones provide direct input to gonadotropin-releasing hormone neurones in the ovine hypothalamus. J. Neuroendocrinol. 13, 1033–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Sherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Kirchgessner, A. L. & Liu, M.-T. Orexin synthesis and response in the gut. Neuron 24, 941–951 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Samson, W. K., Gosnell, B., Chang, J. K., Resch, Z. T. & Murphy, T. C. Cardiovascular regulatory actions of the hypocretins in brain. Brain Res. 831, 248–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M. & Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277, R1780–R1785 (1999). | PubMed |

  67. Chen, C. T., Hwang, L. L., Chang, J. K. & Dun, N. J. Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 278, R692–R697 (2000). | PubMed |

  68. Wang, J., Osaka, T. & Inoue, S. Energy expenditure by intracerebroventricular administration of orexin to anesthetized rats. Neurosci. Lett. 315, 49–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Yoshimichi, G., Yoshimatsu, H., Masaki, T. & Sakata, T. Orexin-A regulates body temperature in coordination with arousal status. Exp Biol Med 226, 468–476 (2001). | PubMed |

    Article  CAS  Google Scholar 

  70. Kunii, K. et al. Orexins/hypocretins regulate drinking behaviour. Brain Res. 842, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi, N., Okumura, T., Yamada, H. & Kohgo, Y. Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem. Biophys. Res. Commun. 254, 623–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Piper, D. C., Upton, N., Smith, M. I. & Hunter, A. J. The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. Eur. J. Neurosci. 12, 726–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Bourgin, P. et al. Hypocretin-1 modulates REM sleep through activation of locus coeruleus neurons. J. Neurosci. 20, 7760–7765 (2000).Showed that local injections of Hcrt1 in vivo excite locus coeruleus noradrenergic neurons, induce c- Fos in those cells and increase wakefulness while reducing REM sleep. This is the hypocretin circuit that has been characterized in most depth (see also references 28, 72, 108 and 109).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Espana, R. A., Baldo, B. A., Kelley, A. E. & Berridge, C. W. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106, 699–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Thakkar, M. M., Ramesh, V., Strecker, R. E. & McCarley, R. W. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch. Ital. Biol. 139, 313–328 (2001).

    CAS  PubMed  Google Scholar 

  76. Pu, S., Jain, M. R., Kalra, P. S. & Kalra, S. P. Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner. Regul. Pept. 78, 133–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Russell, S. H. et al. Orexin A interactions in the hypothalamo-pituitary gonadal axis. Endocrinology 142, 5294–5302 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Malendowicz, L. K., Tortorella, C. & Nussdorfer, G. G. Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade. J. Steroid Biochem. Mol. Biol. 70, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Nowak, K. W., Mackowiak, P., Switonska, M. M., Fabis, M. & Malendowicz, L. K. Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci. 66, 449–454 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Ida, T. et al. Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Commun. 270, 318–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Russell, S. H. et al. The central effects of orexin-A in the hypothalamic–pituitary–adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol. 13, 561–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Jones, D. N. et al. Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology 153, 210–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Samson, W. K. & Taylor, M. M. Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1140–R1145 (2001).

  84. Mikkelsen, J. D. et al. Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin. Eur. J. Neurosci. 14, 419–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Grudt, T. J., Van Den Pol, A. N. & Perl, E. R. Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activity in rat. J. Physiol. (Lond.) 538, 517–525 (2002).

    Article  CAS  Google Scholar 

  86. Bingham, S. et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain 92, 81–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).The first link between narcolepsy and the hypocretin system.

    Article  CAS  PubMed  Google Scholar 

  88. Hungs, M. et al. Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Res. 11, 531–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Jones, B. in Principles and Practice of Sleep Medicine (eds Kryger, M., Roth, T. & Dement, W. C.) 145–162 (W. B. Saunders, Philadelphia, 1994).

    Google Scholar 

  90. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).A concise review of the historical and modern aspects of our understanding of sleep–wake anatomical circuitry.

    Article  CAS  PubMed  Google Scholar 

  93. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).The first evidence that a deficit of hypocretin itself leads to abnormalities in arousal; an excellent demonstration of the value of mouse genetic models in elucidating protein function, even for activities as complex as behaviour.

    Article  CAS  PubMed  Google Scholar 

  94. Gerashchenko, D. et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci. 21, 7273–7283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Willie, J. T., Chemelli, R. M., Sinton, C. M. & Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Mignot, E. et al. Complex HLA-DR and-DQ interactions confer risk of narcolepsy–cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishino, S., Ripley, B., Overeem, S., Lammers, J. G. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Ripley, B. et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57, 2253–2258 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 6, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).References 97, 99 and 100 provide incontrovertible evidence that, in most cases, human narcolepsy is a (probably neurodegenerative) disease of the hypocretin neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, L., Hungs, M. & Mignot, E. Narcolepsy and the HLA region. J. Neuroimmunol. 117, 9–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Alam, M. N. et al. Sleep–waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J. Physiol. (Lond.) 538, 619–631 (2002).

    Article  CAS  Google Scholar 

  103. Estabrooke, I. V. et al. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Terao, A. et al. Prepro-hypocretin (prepro-orexin) expression is unaffected by short-term sleep deprivation in rats and mice. Sleep 23, 867–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Greco, M. A. & Shiromani, P. J. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res. 88, 176–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).

    Article  CAS  PubMed  Google Scholar 

  107. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J. Neurosci. 1, 876–886 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Horvath, T. L. et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415, 145–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Ivanov, A. & Aston-Jones, G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 11, 1755–1758 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Brown, R. E., Sergeeva, O., Eriksson, K. S. & Haas, H. L. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40, 457–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Bayer, L. et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14, 1571–1575 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Yamanaka, A. et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem. Biophys. Res. Commun. 290, 1237–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, Z. L. et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl Acad. Sci. USA 98, 9965–9970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hungs, M. & Mignot, E. Hypocretin/orexin, sleep and narcolepsy. Bioessays 23, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. de Lecea, L. et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Xi, M. C., Morales, F. R. & Chase, M. H. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 901, 259–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kilduff, T. S. & Peyron, C. The hypocretin/orexin ligand–receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Eggermann, E. et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. John, J., Wu, M. F. & Siegel, J. M. Systemic administration of hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs. Sleep Res. Online 3, 23–28 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kastin, A. J., Pan, W., Maness, L. M. & Banks, W. A. Peptides crossing the blood–brain barrier: some unusual observations. Brain Res. 848, 96–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Fujiki, N., Yoshida, Y., Ripley, B., Mignot, E. & Nishino, S. Effect of systemic and central administration of hypocretin 1 in narcoleptic (Hcrtr2 mutated) and control dogs. Sleep 24, A96 (2001).

    Article  Google Scholar 

  122. Nishino, S. et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by grants from the National Institutes of Health and Digital Gene Technologies. We thank A. Spier, C. Alvarez, V. Fabre, E. Thomas, P. Hedlund, C. Ploix and P. Danielson for helpful criticism of the manuscript, and our many collaborators who have shared this trail.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gregor Sutcliffe.

Related links

Related links

DATABASES

LocusLink

Hcrt

Hcrtr1

Hcrtr2

Medscape DrugInfo

Modafinil

OMIM

Guillain-Barré syndrome

narcolepsy

FURTHER INFORMATION

Encyclopedia of Life Sciences

hypothalamus

peptide neurotransmitters and hormones

sleep

sleep disorders

Glossary

OPEN-SYSTEM ANALYSIS

Analysis of all the mRNAs that are expressed by a tissue without regard to whether the mRNAs have previously been identified. The contrasting approach is to measure the expression of known mRNAs, as is done in cDNA array (chip) studies.

MASS SPECTROMETRY

A technique in which a compound is bombarded with an electron beam of sufficient energy to fragment the molecule. The cations that are produced are accelerated in a vacuum through a magnetic field, and sorted on the basis of mass-to-charge ratio. The ratio is roughly equivalent to the molecular weight of the fragment.

CIRCULARLY PERMUTED

The rearrangement of a string of nucleotides or amino acids in which all elements of the string maintain their orientation and immediate neighbours, except for those elements that were at the ends of the string before the rearrangement and those that form the new ends, as if the string had formed a circle and then opened at a different point. At the genetic level, this process is thought to occur by gene duplications to form a tandem structure, followed by deletions from opposite ends of the tandem.

TETRODOTOXIN

A potent marine neurotoxin that blocks voltage-gated sodium channels. Tetrodotoxin was originally isolated from the tetraodon pufferfish.

C-FOS

An immediate early gene that is rapidly turned on when many types of neuron increase their activity. It can therefore be used to identify responsive neurons.

PENETRANCE

The proportion of genotypically mutant organisms that show the mutant phenotype. If all genotypically mutant individuals show the mutant phenotype, then the genotype is said to be completely penetrant.

SAPORIN TARGETING

Saporin is a ribosome-inactivating toxin. When coupled to Hcrt2 and administered locally, the conjugate targets and kills neurons bearing hypocretin receptors.

DOMINANT NEGATIVE

Describes a mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

SET POINT

In a homeostatically regulated phenomenon, the set point is the value that the system strives to maintain; for example, a body weight set point.

ALLOSTASIS

The maintenance of stability at any level outside the normal range is achieved by varying the internal milieu to match perceived and anticipated environmental demands. When demands on an individual are chronic, the set point for functioning is altered and might be maintained at that point indefinitely. Although this altered set point might seem appropriate to the conditions, it could be in the pathological range, in that any further perturbation can produce dysregulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutcliffe, J., de Lecea, L. The hypocretins: Setting the arousal threshold. Nat Rev Neurosci 3, 339–348 (2002). https://doi.org/10.1038/nrn808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing