Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological changes in neurodegeneration — mechanistic insights and clinical utility

Key Points

  • The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological systems

  • Key changes in eating and metabolism, autonomic function, sleep and motor function have been demonstrated across several neurodegenerative conditions

  • Key neural structures that mediate physiological change across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system

  • Evidence from human and animal studies suggests that these changes can arise presymptomatically and worsen with disease progression, offering a potential avenue for developing biomarkers to track disease progression

  • Further research is required to determine whether physiological changes simply result from the neurodegeneration process or also modify the neurodegenerative process, thereby providing a novel therapeutic target

Abstract

The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological changes documented in neurodegenerative syndromes.
Figure 2: Network connections of the hypothalamus.
Figure 3: Potential interplay between physiological changes, neural networks, underlying pathology and clinical phenotype.
Figure 4: Time course of the development of physiological changes in relation to cognitive and motor changes in neurodegenerative syndromes.

Similar content being viewed by others

References

  1. Boeve, B. F. The multiple phenotypes of corticobasal syndrome and corticobasal degeneration: implications for further study. J. Mol. Neurosci. 45, 350–353 (2011).

    CAS  PubMed  Google Scholar 

  2. Perry, D. C. et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 140, 3329–3345 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Ahmed, R. M. et al. Neuronal network disintegration: common pathways linking neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 87, 1234–1241 (2016). This paper provides a good overview of network disintegration in neurodegeneration.

    PubMed  Google Scholar 

  4. Ott, A. et al. Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study. BMJ 310, 970–973 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rohrer, J. D. et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134, 2565–2581 (2011). This article is a good overview of the pathologies of FTD.

    PubMed  PubMed Central  Google Scholar 

  6. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Mitsuyama, Y. & Inoue, T. Clinical entity of frontotemporal dementia with motor neuron disease. Neuropathology 29, 649–654 (2009).

    PubMed  Google Scholar 

  8. Burrell, J. R., Kiernan, M. C., Vucic, S. & Hodges, J. R. Motor neuron dysfunction in frontotemporal dementia. Brain 134, 2582–2594 (2011).

    PubMed  Google Scholar 

  9. Lomen-Hoerth, C., Anderson, T. & Miller, B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59, 1077–1079 (2002).

    PubMed  Google Scholar 

  10. Ahmed, R. M. et al. Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol. 15, 332–342 (2016). This provides a good overview of changes in eating and metabolism that occur in FTD and ALS.

    PubMed  Google Scholar 

  11. Ahmed, R. M. et al. Assessment of eating behavior disturbance and associated neural networks in frontotemporal dementia. JAMA Neurol. 73, 282–290 (2016).

    PubMed  Google Scholar 

  12. Ahmed, R. M. et al. Cognition and eating behavior in amyotrophic lateral sclerosis: effect on survival. J. Neurol. 263, 1593–1603 (2016).

    CAS  PubMed  Google Scholar 

  13. Aziz, N. A. et al. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71, 1506–1513 (2008).

    CAS  PubMed  Google Scholar 

  14. Aziz, N. A. et al. Weight loss in neurodegenerative disorders. J. Neurol. 255, 1872–1880 (2008).

    CAS  PubMed  Google Scholar 

  15. Westfall, S. et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74, 3769–3787 (2017).

    CAS  PubMed  Google Scholar 

  16. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Piguet, O., Hornberger, M., Shelley, B. P., Kipps, C. M. & Hodges, J. R. Sensitivity of current criteria for the diagnosis of behavioral variant frontotemporal dementia. Neurology 72, 732–737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Woolley, J. D. et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 69, 1424–1433 (2007).

    CAS  PubMed  Google Scholar 

  19. Miller, B. L., Darby, A. L., Swartz, J. R., Yener, G. G. & Mena, I. Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. Dementia 6, 195–199 (1995).

    CAS  PubMed  Google Scholar 

  20. Snowden, J. S. et al. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 70, 323–332 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikeda, M., Brown, J., Holland, A. J., Fukuhara, R. & Hodges, J. R. Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 73, 371–376 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahmed, R. M. et al. Quantifying the eating abnormalities in frontotemporal dementia. JAMA Neurol. 71, 1540–1546 (2014).

    PubMed  Google Scholar 

  23. Van Langenhove, T., Leyton, C. E., Piguet, O. & Hodges, J. R. Comparing longitudinal behavior changes in the primary progressive aphasias. J. Alzheimers Dis. 53, 1033–1042 (2016).

    PubMed  Google Scholar 

  24. Langmore, S. E., Olney, R. K., Lomen-Hoerth, C. & Miller, B. L. Dysphagia in patients with frontotemporal lobar dementia. Arch. Neurol. 64, 58–62 (2007).

    PubMed  Google Scholar 

  25. Liu, W. et al. Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology 62, 742–748 (2004).

    CAS  PubMed  Google Scholar 

  26. Kuhnlein, P. et al. Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat. Clin. Pract. Neurol. 4, 366–374 (2008).

    PubMed  Google Scholar 

  27. Holm, T. et al. Severe loss of appetite in amyotrophic lateral sclerosis patients: online self-assessment study. Interact. J. Med. Res. 2, e8 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Huisman, M. H. et al. Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral sclerosis. JAMA Neurol. 72, 1155–1162 (2015).

    PubMed  Google Scholar 

  29. Palamiuc, L. et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med. 7, 526–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupuis, L., Oudart, H., Rene, F., Gonzalez de Aguilar, J. L. & Loeffler, J. P. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc. Natl Acad. Sci. USA 101, 11159–11164 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kai, K. et al. Relationship between eating disturbance and dementia severity in patients with Alzheimer's disease. PLOS ONE 10, e0133666 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Frisardi, V. et al. Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer's disease. Ageing Res. Rev. 9, 399–417 (2010).

    PubMed  Google Scholar 

  33. Panza, F. et al. Metabolic syndrome and cognitive impairment: current epidemiology and possible underlying mechanisms. J. Alzheimers Dis. 21, 691–724 (2010).

    PubMed  Google Scholar 

  34. Cramer, C., Haan, M. N., Galea, S., Langa, K. M. & Kalbfleisch, J. D. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology 71, 344–350 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kronmal, R. A., Cain, K. C., Ye, Z. & Omenn, G. S. Total serum cholesterol levels and mortality risk as a function of age. A report based on the Framingham data. Arch. Intern. Med. 153, 1065–1073 (1993).

    CAS  PubMed  Google Scholar 

  36. Piguet, O. et al. Vascular risk factors, cognition and dementia incidence over 6 years in the Sydney Older Persons Study. Neuroepidemiology 22, 165–171 (2003).

    PubMed  Google Scholar 

  37. Rizvi, B. et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy. Neurobiol. Aging 64, 25–32 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Bos, I. et al. Cerebrovascular and amyloid pathology in predementia stages: the relationship with neurodegeneration and cognitive decline. Alzheimers Res. Ther. 9, 101 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Reich-Slotky, R. et al. Body mass index (BMI) as predictor of ALSFRS-R score decline in ALS patients. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 212–216 (2013).

    PubMed  Google Scholar 

  40. Bouteloup, C. et al. Hypermetabolism in ALS patients: an early and persistent phenomenon. J. Neurol. 256, 1236–1242 (2009).

    CAS  PubMed  Google Scholar 

  41. Vaisman, N. et al. Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J. Neurol. Sci. 279, 26–29 (2009).

    PubMed  Google Scholar 

  42. Dupuis, L., Pradat, P. F., Ludolph, A. C. & Loeffler, J. P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 10, 75–82 (2011).

    CAS  PubMed  Google Scholar 

  43. Kasarskis, E. J., Berryman, S., Vanderleest, J. G., Schneider, A. R. & McClain, C. J. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am. J. Clin. Nutr. 63, 130–137 (1996).

    CAS  PubMed  Google Scholar 

  44. Menzies, F. M., Ince, P. G. & Shaw, P. J. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem. Int. 40, 543–551 (2002).

    CAS  PubMed  Google Scholar 

  45. Chiang, P. M. et al. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl Acad. Sci. USA 107, 16320–16324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, Y. F. et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shan, X., Chiang, P. M., Price, D. L. & Wong, P. C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc. Natl Acad. Sci. USA 107, 16325–16330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmed, R. M. et al. Energy expenditure in frontotemporal dementia: a behavioural and imaging study. Brain 140, 171–183 (2017).

    PubMed  Google Scholar 

  49. Dupuis, L. et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70, 1004–1009 (2008).

    CAS  PubMed  Google Scholar 

  50. Dorst, J. et al. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J. Neurol. 258, 613–617 (2011).

    CAS  PubMed  Google Scholar 

  51. Sutedja, N. A. et al. Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 82, 638–642 (2011).

    CAS  PubMed  Google Scholar 

  52. Ikeda, K., Hirayama, T., Takazawa, T., Kawabe, K. & Iwasaki, Y. Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in Japanese patients with amyotrophic lateral sclerosis: a cross-sectional study. Intern. Med. 51, 1501–1508 (2012).

    CAS  PubMed  Google Scholar 

  53. Yang, J. W. et al. Hypolipidemia in patients with amyotrophic lateral sclerosis: a possible gender difference? J. Clin. Neurol. 9, 125–129 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Chio, A. et al. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73, 1681–1685 (2009).

    CAS  PubMed  Google Scholar 

  55. Jawaid, A. et al. ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur. J. Neurol. 17, 733–739 (2010).

    CAS  PubMed  Google Scholar 

  56. Reyes, E. T., Perurena, O. H., Festoff, B. W., Jorgensen, R. & Moore, W. V. Insulin resistance in amyotrophic lateral sclerosis. J. Neurol. Sci. 63, 317–324 (1984).

    CAS  PubMed  Google Scholar 

  57. Dupuis, L. et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLOS ONE 7, e37885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jawaid, A., Paganoni, S., Hauser, C. & Schulz, P. E. Trials of antidiabetic drugs in amyotrophic lateral sclerosis: proceed with caution? Neurodegener Dis. 13, 205–208 (2014).

    CAS  PubMed  Google Scholar 

  59. Gao, S. et al. Accelerated weight loss and incident dementia in an elderly African-American cohort. J. Am. Geriatr. Soc. 59, 18–25 (2011).

    PubMed  Google Scholar 

  60. Chakrabarti, S. et al. Metabolic risk factors of sporadic Alzheimer's disease: implications in the pathology, pathogenesis and treatment. Aging Dis. 6, 282–299 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Meng, X. F. et al. Midlife vascular risk factors and the risk of Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimers Dis. 42, 1295–1310 (2014).

    PubMed  Google Scholar 

  62. Noyce, A. J. et al. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLOS Med. 14, e1002314 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Whitwell, J. L. et al. VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration. NeuroImage 35, 207–213 (2007).

    PubMed  Google Scholar 

  64. Perry, D. C. et al. Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain 137, 1621–1626 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Irish, M., Piguet, O. & Hodges, J. R. Self-projection and the default network in frontotemporal dementia. Nat. Rev. Neurol. 8, 152–161 (2011).

    Google Scholar 

  66. Woolley, J. D. et al. Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia. Neurology 82, 512–520 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahmed, R. M. et al. Eating behavior in frontotemporal dementia: peripheral hormones versus hypothalamic pathology. Neurology 85, 1310–1317 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Piguet, O. et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann. Neurol. 69, 312–319 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. Coll, A. P., Farooqi, I. S., Challis, B. G., Yeo, G. S. & O'Rahilly, S. Proopiomelanocortin and energy balance: insights from human and murine genetics. J. Clin. Endocrinol. Metabol. 89, 2557–2562 (2004).

    CAS  Google Scholar 

  70. Coll, A. P., Farooqi, I. S. & O'Rahilly, S. The hormonal control of food intake. Cell 129, 251–262 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Swaab, D. F. et al. Functional neuroanatomy and neuropathology of the human hypothalamus. Anat. Embryol. 187, 317–330 (1993).

    CAS  Google Scholar 

  72. Ahmed, R. M. et al. Autonomic dysregulation in frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 86, 1048–1049 (2015).

    CAS  PubMed  Google Scholar 

  73. Cong, N. D. et al. Reduced 24 hour ambulatory blood pressure and abnormal heart rate variability in patients with dysorexia nervosa. Heart 90, 563–564 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vercruysse, P. et al. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139, 1106–1122 (2016).

    PubMed  Google Scholar 

  75. Cykowski, M. D., Takei, H., Schulz, P. E., Appel, S. H. & Powell, S. Z. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 2, 171 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Ahmed, R. & Farooqi, I. S. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 1006–1007 (2017).

    PubMed  Google Scholar 

  77. Gorges, M. et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 1033–1041 (2017).

    PubMed  Google Scholar 

  78. Alberici, A. et al. Serum leptin levels are higher in females affected by frontotemporal lobar degeneration than Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 79, 712–715 (2008).

    CAS  PubMed  Google Scholar 

  79. Warren, M. W., Hynan, L. S. & Weiner, M. F. Lipids and adipokines as risk factors for Alzheimer's disease. J. Alzheimers Dis. 29, 151–157 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Walker, K. A., Power, M. C. & Gottesman, R. F. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr. Hypertens. Rep. 19, 24 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Bocti, C. et al. Orthostatic hypotension associated with executive dysfunction in mild cognitive impairment. J. Neurol. Sci. 382, 79–83 (2017).

    PubMed  Google Scholar 

  82. McLeod, K. J. & Jain, T. Postural hypotension and cognitive function in older adults. Gerontol. Geriatr. Med. 3, 2333721417733216 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Diehl-Schmid, J. et al. Extrapyramidal signs, primitive reflexes and incontinence in fronto-temporal dementia. Eur. J. Neurol. 14, 860–864 (2007).

    CAS  PubMed  Google Scholar 

  84. Hoefer, M. et al. Fear conditioning in frontotemporal lobar degeneration and Alzheimer's disease. Brain 131, 1646–1657 (2008).

    CAS  PubMed  Google Scholar 

  85. Fletcher, P. D. et al. Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. Brain 138, 3360–3372 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    CAS  PubMed  Google Scholar 

  87. Guo, C. C. et al. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc. Natl Acad. Sci. USA 113, E2430–E2439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fletcher, P. D. et al. A physiological signature of sound meaning in dementia. Cortex 77, 13–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Merico, A. & Cavinato, M. Autonomic dysfunction in the early stage of ALS with bulbar involvement. Amyotroph. Lateral Scler. 12, 363–367 (2011).

    PubMed  Google Scholar 

  90. Baltadzhieva, R., Gurevich, T. & Korczyn, A. D. Autonomic impairment in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 18, 487–493 (2005).

    PubMed  Google Scholar 

  91. Shimizu, T. et al. Circulatory collapse and sudden death in respirator-dependent amyotrophic lateral sclerosis. J. Neurol. Sci. 124, 45–55 (1994).

    CAS  PubMed  Google Scholar 

  92. Shimizu, T., Kato, S., Hayashi, M., Hayashi, H. & Tanabe, H. Amyotrophic lateral sclerosis with hypertensive attacks: blood pressure changes in response to drug administration. Clin. Auton. Res. 6, 241–244 (1996).

    CAS  PubMed  Google Scholar 

  93. Vucic, S. Sensory and autonomic nervous system dysfunction in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 43, 99–101 (2017).

    CAS  PubMed  Google Scholar 

  94. Beck, M. et al. Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 73, 68–70 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Toepfer, M. et al. Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 15–19 (1999).

    CAS  PubMed  Google Scholar 

  96. Nolano, M. et al. Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol. Appl. Neurobiol. 43, 119–132 (2017).

    CAS  PubMed  Google Scholar 

  97. Giubilei, F. et al. Cardiac autonomic dysfunction in patients with Alzheimer disease: possible pathogenetic mechanisms. Alzheimer Dis. Assoc. Disord. 12, 356–361 (1998).

    CAS  PubMed  Google Scholar 

  98. Pascualy, M. et al. Hypothalamic pituitary adrenocortical and sympathetic nervous system responses to the cold pressor test in Alzheimer's disease. Biol. Psychiatry 48, 247–254 (2000).

    CAS  PubMed  Google Scholar 

  99. Perry, E. K., Smith, C. J., Court, J. A. & Perry, R. H. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J. Neural Transm. Park Dis. Dement. Sect. 2, 149–158 (1990).

    CAS  PubMed  Google Scholar 

  100. Royall, D. R., Gao, J. H. & Kellogg, D. L. Jr. Insular Alzheimer's disease pathology as a cause of “age-related” autonomic dysfunction and mortality in the non-demented elderly. Med. Hypotheses 67, 747–758 (2006).

    PubMed  Google Scholar 

  101. Santos, C. Y., Machan, J. T., Wu, W. C. & Snyder, P. J. Autonomic cardiac function in preclinical Alzheimer's disease. J. Alzheimers Dis. 59, 1057–1065 (2017).

    PubMed  Google Scholar 

  102. Lattanzi, S., Luzzi, S., Provinciali, L. & Silvestrini, M. Blood pressure variability in Alzheimer's disease and frontotemporal dementia: the effect on the rate of cognitive decline. J. Alzheimers Dis. 45, 387–394 (2015).

    PubMed  Google Scholar 

  103. Femminella, G. D. et al. Autonomic dysfunction in Alzheimer's disease: tools for assessment and review of the literature. J. Alzheimers Dis. 42, 369–377 (2014).

    PubMed  Google Scholar 

  104. Boxer, A. L. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 16, 552–563 (2017). This study provides a good overview of the new diagnostic criteria for PSP syndrome.

    PubMed  PubMed Central  Google Scholar 

  105. Schmidt, C. et al. Autonomic dysfunction in patients with progressive supranuclear palsy. Mov. Disord. 23, 2083–2089 (2008).

    PubMed  Google Scholar 

  106. Reimann, M. et al. Comprehensive autonomic assessment does not differentiate between Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. J. Neural Transm. 117, 69–76 (2010).

    PubMed  Google Scholar 

  107. Jones, S. E. Imaging for autonomic dysfunction. Cleve. Clin. J. Med. 78, S69–S74 (2011).

    PubMed  Google Scholar 

  108. Critchley, H. D., Nagai, Y., Gray, M. A. & Mathias, C. J. Dissecting axes of autonomic control in humans: insights from neuroimaging. Auton. Neurosci. 161, 34–42 (2011). This is a good overview of the neural control of autonomic function.

    PubMed  Google Scholar 

  109. Seeley, W. W. et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch. Neurol. 65, 249–255 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Kumfor, F., Irish, M., Hodges, J. R. & Piguet, O. Discrete neural correlates for the recognition of negative emotions: insights from frontotemporal dementia. PLOS ONE 8, e67457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Galton, C. J. et al. Temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 70, 165–173 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Irish, M., Piguet, O., Hodges, J. R. & Hornberger, M. Common and unique gray matter correlates of episodic memory dysfunction in frontotemporal dementia and Alzheimer's disease. Hum. Brain Mapp. 35, 1422–1435 (2014).

    PubMed  Google Scholar 

  113. Kipps, C. M., Nestor, P. J., Acosta-Cabronero, J., Arnold, R. & Hodges, J. R. Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing. Brain 132, 592–603 (2009).

    CAS  PubMed  Google Scholar 

  114. Perneczky, R. et al. Urinary incontinence and its functional anatomy in frontotemporal lobar degenerations. Eur. J. Nucl. Med. Mol. Imaging 35, 605–610 (2008).

    PubMed  Google Scholar 

  115. Rosen, H. J. & Levenson, R. W. The emotional brain: combining insights from patients and basic science. Neurocase 15, 173–181 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. Craig, A. D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    CAS  PubMed  Google Scholar 

  117. Critchley, H. D. et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126, 2139–2152 (2003).

    PubMed  Google Scholar 

  118. Luu, P. & Posner, M. I. Anterior cingulate cortex regulation of sympathetic activity. Brain 126, 2119–2120 (2003).

    PubMed  Google Scholar 

  119. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Thayer, J. F. et al. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).

    PubMed  Google Scholar 

  121. Mieda, M. The roles of orexins in sleep/wake regulation. Neurosci. Res. 118, 56–65 (2017).

    CAS  PubMed  Google Scholar 

  122. Bonakis, A. et al. Sleep in frontotemporal dementia is equally or possibly more disrupted, and at an earlier stage, when compared to sleep in Alzheimer's disease. J. Alzheimers Dis. 38, 85–91 (2014).

    PubMed  Google Scholar 

  123. Anderson, K. N., Hatfield, C., Kipps, C., Hastings, M. & Hodges, J. R. Disrupted sleep and circadian patterns in frontotemporal dementia. Eur. J. Neurol. 16, 317–323 (2009).

    CAS  PubMed  Google Scholar 

  124. Pawlak, C., Blois, R., Gaillard, J. M. & Richard, J. Sleep in Pick disease. Encephale 12, 327–334 (1986).

    CAS  PubMed  Google Scholar 

  125. McCarter, S. J., St Louis, E. K. & Boeve, B. F. Sleep disturbances in frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 16, 85 (2016). This paper is a good overview of sleep changes that occur in FTD.

    PubMed  Google Scholar 

  126. Ahmed, R. M. et al. Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Med. Rev. 26, 33–42 (2016). This article provides a good overview of sleep changes in ALS.

    PubMed  Google Scholar 

  127. Atalaia, A., De Carvalho, M., Evangelista, T. & Pinto, A. Sleep characteristics of amyotrophic lateral sclerosis in patients with preserved diaphragmatic function. Amyotroph. Lateral Scler. 8, 101–105 (2007).

    PubMed  Google Scholar 

  128. Yamauchi, R. et al. Respiratory insufficiency with preserved diaphragmatic function in amyotrophic lateral sclerosis. Intern. Med. 53, 1325–1331 (2014).

    PubMed  Google Scholar 

  129. Santos, C. et al. Sleep-related breathing disorders in amyotrophic lateral sclerosis. Monaldi Arch. Chest Dis. 59, 160–165 (2003).

    CAS  PubMed  Google Scholar 

  130. David, W. S., Bundlie, S. R. & Mahdavi, Z. Polysomnographic studies in amyotrophic lateral sclerosis. J. Neurol. Sci. 152, S29–S35 (1997).

    PubMed  Google Scholar 

  131. Park, S. Y. et al. Nocturnal hypoxia in ALS is related to cognitive dysfunction and can occur as clusters of desaturations. PLOS ONE 8, e75324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Turek, F. W., Dugovic, C. & Zee, P. C. Current understanding of the circadian clock and the clinical implications for neurological disorders. Arch. Neurol. 58, 1781–1787 (2001).

    CAS  PubMed  Google Scholar 

  133. Bede, P. et al. Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 81, 361–369 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Newsom-Davis, I. C., Lyall, R. A., Leigh, P. N., Moxham, J. & Goldstein, L. H. The effect of non-invasive positive pressure ventilation (NIPPV) on cognitive function in amyotrophic lateral sclerosis (ALS): a prospective study. J. Neurol. Neurosurg. Psychiatry 71, 482–487 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Raggi, A. & Ferri, R. Sleep disorders in neurodegenerative diseases. Eur. J. Neurol. 17, 1326–1338 (2010).

    CAS  PubMed  Google Scholar 

  136. Vitiello, M. V. & Borson, S. Sleep disturbances in patients with Alzheimer's disease: epidemiology, pathophysiology and treatment. CNS Drugs 15, 777–796 (2001).

    CAS  PubMed  Google Scholar 

  137. Prinz, P. N. et al. Sleep, EEG and mental function changes in senile dementia of the Alzheimer's type. Neurobiol. Aging 3, 361–370 (1982).

    CAS  PubMed  Google Scholar 

  138. Vitiello, M. V. & Prinz, P. N. Alzheimer's disease. Sleep and sleep/wake patterns. Clin. Geriatr. Med. 5, 289–299 (1989).

    CAS  PubMed  Google Scholar 

  139. Hita-Yanez, E., Atienza, M., Gil-Neciga, E. & Cantero, J. L. Disturbed sleep patterns in elders with mild cognitive impairment: the role of memory decline and ApoE epsilon4 genotype. Curr. Alzheimer Res. 9, 290–297 (2012).

    CAS  PubMed  Google Scholar 

  140. Mander, B. A., Winer, J. R., Jagust, W. J. & Walker, M. P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer's disease? Trends Neurosci. 39, 552–566 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Aldrich, M. S., Foster, N. L., White, R. F., Bluemlein, L. & Prokopowicz, G. Sleep abnormalities in progressive supranuclear palsy. Ann. Neurol. 25, 577–581 (1989).

    CAS  PubMed  Google Scholar 

  142. Arnulf, I. et al. REM sleep behavior disorder and REM sleep without atonia in patients with progressive supranuclear palsy. Sleep 28, 349–354 (2005).

    PubMed  Google Scholar 

  143. Kimura, K., Tachibana, N., Aso, T., Kimura, J. & Shibasaki, H. Subclinical REM sleep behavior disorder in a patient with corticobasal degeneration. Sleep 20, 891–894 (1997).

    CAS  PubMed  Google Scholar 

  144. Wetter, T. C., Brunner, H., Collado-Seidel, V., Trenkwalder, C. & Winkelmann, J. Sleep and periodic limb movements in corticobasal degeneration. Sleep Med. 3, 33–36 (2002).

    PubMed  Google Scholar 

  145. Moore, R. Y. Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med. 8 (Suppl. 3), 27–33 (2007).

    PubMed  Google Scholar 

  146. Stopa, E. G. et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58, 29–39 (1999).

    CAS  PubMed  Google Scholar 

  147. Theofilas, P., Dunlop, S., Heinsen, H. & Grinberg, L. T. Turning on the light within: subcortical nuclei of the isodentritic core and their role in Alzheimer's disease pathogenesis. J. Alzheimers Dis. 46, 17–34 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Coban, A. et al. Reduced orexin-A levels in frontotemporal dementia: possible association with sleep disturbance. Am. J. Alzheimers Dis. Other Demen. 28, 606–611 (2013).

    PubMed  Google Scholar 

  149. Yasui, K. et al. CSF orexin levels of Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J. Neurol. Sci. 250, 120–123 (2006).

    CAS  PubMed  Google Scholar 

  150. Warren, J. D. & Clark, C. N. A new hypnic paradigm of neurodegenerative proteinopathies. Sleep Med. 32, 282–283 (2017). This article proposes a new hypnic paradigm for neurodegeneration.

    PubMed  Google Scholar 

  151. Vucic, S. & Kiernan, M. C. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics 14, 91–106 (2017). This paper provides a good overview of TMS.

    CAS  PubMed  Google Scholar 

  152. Cantone, M. et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin. Neurophysiol. 125, 1509–1532 (2014).

    PubMed  Google Scholar 

  153. Vucic, S., Nicholson, G. A. & Kiernan, M. C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540–1550 (2008).

    PubMed  Google Scholar 

  154. Geevasinga, N. et al. Cortical function in asymptomatic carriers and patients with C9orf72 amyotrophic lateral sclerosis. JAMA Neurol. 72, 1268–1274 (2015).

    PubMed  PubMed Central  Google Scholar 

  155. Menon, P., Kiernan, M. C. & Vucic, S. Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin. Neurophysiol. 126, 803–809 (2015).

    PubMed  Google Scholar 

  156. Eisen, A., Kim, S. & Pant, B. Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15, 219–224 (1992).

    CAS  PubMed  Google Scholar 

  157. Liepert, J., Bar, K. J., Meske, U. & Weiller, C. Motor cortex disinhibition in Alzheimer's disease. Clin. Neurophysiol. 112, 1436–1441 (2001).

    CAS  PubMed  Google Scholar 

  158. Kuhn, A. A. et al. Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin. Neurophysiol. 115, 1786–1795 (2004).

    CAS  PubMed  Google Scholar 

  159. Wittstock, M. et al. Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. J. Neural Transm. 120, 453–461 (2013).

    CAS  PubMed  Google Scholar 

  160. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). This paper is a good overview of network involvement in neurodegeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kullmann, S. et al. Resting-state functional connectivity of the human hypothalamus. Hum. Brain Mapp. 35, 6088–6096 (2014). This is a good overview of the cortical connections of the hypothalamus.

    PubMed  PubMed Central  Google Scholar 

  162. Seeley, W. W. Anterior insula degeneration in frontotemporal dementia. Brain Struct. Funct. 214, 465–475 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. Bonthius, D. J., Solodkin, A. & Van Hoesen, G. W. Pathology of the insular cortex in Alzheimer disease depends on cortical architecture. J. Neuropathol. Exp. Neurol. 64, 910–922 (2005).

    PubMed  Google Scholar 

  164. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007). This article provides a good overview of the salience network.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 133, 1352–1367 (2010).

    PubMed  PubMed Central  Google Scholar 

  166. Rosen, H. J. et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58, 198–208 (2002).

    CAS  PubMed  Google Scholar 

  167. Day, G. S. et al. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurol. 70, 1249–1253 (2013).

    PubMed  Google Scholar 

  168. Farb, N. A. S. et al. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 49, 1856–1873 (2013).

    PubMed  Google Scholar 

  169. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    CAS  PubMed  Google Scholar 

  170. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15997–16002 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ke, Y. D. et al. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol. 130, 661–678 (2015).

    CAS  PubMed  Google Scholar 

  172. Walker, A. K. et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol. 130, 643–660 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ittner, L. M., Ke, Y. D. & Gotz, J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem. 284, 20909–20916 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Platt, B. et al. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLOS ONE 6, e27068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Holth, J. K., Mahan, T. E., Robinson, G. O., Rocha, A. & Holtzman, D. M. Altered sleep and EEG power in the P301S Tau transgenic mouse model. Ann. Clin. Transl Neurol. 4, 180–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Koss, D. J. et al. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol. Dis. 91, 105–123 (2016).

    CAS  PubMed  Google Scholar 

  178. Cantero, J. L. et al. Tau protein role in sleep-wake cycle. J. Alzheimers Dis. 21, 411–421 (2010).

    CAS  PubMed  Google Scholar 

  179. Liu, R., Sheng, Z. F., Cai, B., Zhang, Y. H. & Fan, D. S. Increased orexin expression promotes sleep/wake disturbances in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Chin. Med. J. 128, 239–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Rothman, S. M., Herdener, N., Frankola, K. A., Mughal, M. R. & Mattson, M. P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Abeta and pTau in a mouse model of Alzheimer's disease. Brain Res. 1529, 200–208 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Di Meco, A., Joshi, Y. B. & Pratico, D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer's disease with plaques and tangles. Neurobiol. Aging 35, 1813–1820 (2014).

    CAS  PubMed  Google Scholar 

  182. Ishii, M., Wang, G., Racchumi, G., Dyke, J. P. & Iadecola, C. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J. Neurosci. 34, 9096–9106 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Joly-Amado, A. et al. Metabolic changes over the course of aging in a mouse model of tau deposition. Neurobiol. Aging 44, 62–73 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    CAS  PubMed  Google Scholar 

  185. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    CAS  PubMed  Google Scholar 

  186. Ittner, A. et al. Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354, 904–908 (2016).

    CAS  PubMed  Google Scholar 

  187. Leboucher, A. et al. Detrimental effects of diet-induced obesity on tau pathology are independent of insulin resistance in tau transgenic mice. Diabetes 62, 1681–1688 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Brownlow, M. L. et al. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav. Brain Res. 271, 79–88 (2014).

    CAS  PubMed  Google Scholar 

  189. Ahmed, R. M. et al. Systemic metabolism in frontotemporal dementia. Neurology 83, 1812–1818 (2014).

    CAS  PubMed  Google Scholar 

  190. Erro, R., Barone, P., Moccia, M., Amboni, M. & Vitale, C. Abnormal eating behaviors in progressive supranuclear palsy. Eur. J. Neurol. 20, e47–48 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding received by ForeFront (a collaborative research group dedicated to the study of frontotemporal dementia and amyotrophic lateral sclerosis) from the National Health and Medical Research Council of Australia (NHMRC) programme (grant 1037746 to L.M.I., J.R.H. G.H. and M.C.K.) and the Australian Research Council Centre of Excellence in Cognition and its Disorders Memory Program (CE110001021 to J.R.H. and O.P.) and other grants and/or sources (NHMRC project grants 1003139 and 1081916, and a Royal Australasian College of Physicians Vincent Fairfax family fellowship). The authors are grateful to the research participants involved with the ForeFront research studies. R.M.A. is an NHMRC Early Career Fellow (1120770). Y.D.K. is an NHMRC R. D. Wright Biomedical Career Development Fellow (112564). O.P. is an NHMRC Senior Research Fellow (1103258). G.H. is an NHMRC Senior Principal Research Fellow (1079679).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Rebekah M. Ahmed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, R., Ke, Y., Vucic, S. et al. Physiological changes in neurodegeneration — mechanistic insights and clinical utility. Nat Rev Neurol 14, 259–271 (2018). https://doi.org/10.1038/nrneurol.2018.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2018.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing