Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genetics of rheumatoid arthritis in Asia—present and future

Abstract

Genome-wide association studies (GWAS) have uncovered numerous susceptibility genes for rheumatoid arthritis (RA) in patients of European, Asian and other ethnic ancestries. Although previous transethnic GWAS meta-analyses enabled the identification of several novel loci, the genetic heterogeneity observed in the PADI4 and PTPN22 genes suggests that ethnic variation should be considered. In addition, the effects of genetic polymorphisms on gene expression profiles are important when assessing the association of genetic information with disease pathogenesis and will influence the development of personalized medicine. Gene expression is controlled by epigenetic modifications, which in turn can be affected by environmental stimuli. Altogether, genetic and epigenetic information of Asian populations will contribute considerably to future rheumatology research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical overview of disease susceptibility polymorphisms identified in RA.
Figure 2: Association between risk genes and approved RA drugs.
Figure 3: Disease susceptibility polymorphisms can determine disease pathogenesis.

Similar content being viewed by others

References

  1. Smolen, J. S. et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann. Rheum. Dis. 69, 631–637 (2010).

    Article  PubMed  Google Scholar 

  2. Cavagna, L. et al. The multifaceted aspects of interstitial lung disease in rheumatoid arthritis. Biomed. Res. Int. 2013, 759760 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. National Institutes of Health. A catalog of published genome-wide association studies [online], (2014).

  4. Marigorta, U. M. & Navarro, A. High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. 9, e1003566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 365–402 (2003).

    Article  Google Scholar 

  6. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  PubMed  Google Scholar 

  7. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kochi, Y. et al. PADI4 polymorphism predisposes male smokers to rheumatoid arthritis. Ann. Rheum. Dis. 70, 512–515 (2011).

    Article  PubMed  Google Scholar 

  9. Mori, M., Yamada, R., Kobayashi, K., Kawaida, R. & Yamamoto, K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50, 264–266 (2005).

    Article  PubMed  Google Scholar 

  10. Ramos, P. S., Shaftman, S. R., Ward, R. C. & Langefeld, C. D. Genes associated with SLE are targets of recent positive selection. Autoimmune Dis. 2014, 203435 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Okada, Y. et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44, 511–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kurreeman, F. A. et al. Use of a multiethnic approach to identify rheumatoid- arthritis-susceptibility loci, 1p36 and 17q12. Am. J. Hum. Genet. 90, 524–532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wakitani, S. et al. The homozygote of HLA-DRB1*0901, not its heterozygote, is associated with rheumatoid arthritis in Japanese. Scand. J. Rheumatol. 27, 381–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H. S. et al. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50, 3468–3475 (2004).

    Article  PubMed  Google Scholar 

  17. Kong, K. F., Yeap, S. S., Chow, S. K. & Phipps, M. E. HLA-DRB1 genes and susceptibility to rheumatoid arthritis in three ethnic groups from Malaysia. Autoimmunity 35, 235–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Kochi, Y. et al. Analysis of single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. Arthritis Rheum. 50, 63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimane, K. et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 52, 1172–1182 (2013).

    Article  CAS  Google Scholar 

  22. Okada, Y. et al. HLA-DRB1*0901 lowers anti-cyclic citrullinated peptide antibody levels in Japanese patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 1569–1570 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Freed, B. M., Schuyler, R. P. & Aubrey, M. T. Association of the HLA-DRB1 epitope LA(67, 74) with rheumatoid arthritis and citrullinated vimentin binding. Arthritis Rheum. 63, 3733–3739 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, L. et al. Novel risk loci for rheumatoid arthritis in Han Chinese and congruence with risk variants in Europeans. Arthritis Rheumatol. 66, 1121–1132 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet. 11, 17–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Myouzen, K. et al. Functional variants in NFKBIE and RTKN2 involved in activation of the NF-κB pathway are associated with rheumatoid arthritis in Japanese. PLoS Genet. 8, e1002949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bengsch, B. et al. Human TH17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J. Immunol. 188, 5438–5447 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Stahl, E. A. et al. Bayesian inference analyses of the polygenicarchitecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Y., Epstein, M. P. & Conneely, K. N. Assessing the impact of population stratification on association studies of rare variation. Hum. Hered. 76, 28–35 (2013).

    Article  PubMed  Google Scholar 

  31. Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trynka, G. et al. Chromatin marks identify critical cell-types for fine-mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.O. contributed substantially to the discussion of content. K.Y., A.S. and Y.K. reviewed and edited the manuscript before submission. All authors wrote the manuscript.

Corresponding author

Correspondence to Kazuhiko Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Results of previously reported GWAS of rheumatoid arthritis performed in Asian populations (DOCX 24 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Okada, Y., Suzuki, A. et al. Genetics of rheumatoid arthritis in Asia—present and future. Nat Rev Rheumatol 11, 375–379 (2015). https://doi.org/10.1038/nrrheum.2015.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing