Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epidemiology of urinary tract infection

Abstract

Urinary tract infections (UTIs) are among the most common bacterial infections acquired in the community and in hospitals. In individuals without anatomical or functional abnormalities, UTIs are generally self limiting, but have a propensity to recur. Uropathogens have specialized characteristics, such as the production of adhesins, siderophores and toxins that enable them to colonize and invade the urinary tract, and are transmitted between individuals both through person-to-person contact and possibly via food or water. Although generally self limiting, treatment of UTIs with antibiotics leads to a more rapid resolution of symptoms and is more likely to clear bacteriuria, but also selects for resistant uropathogens and commensal bacteria and adversely affects the gut and vaginal microbiota. As uropathogens are increasingly becoming resistant to currently available antibiotics, it may be time to explore alternative strategies for managing UTI.

Key Points

  • Urinary tract infection (UTI) is diagnosed using a combination of urinary symptoms and urine culture; 20% of women presenting with symptoms indicative of UTI will have a negative urine culture

  • Escherichia coli are the bacteria most frequently implicated in uncomplicated UTI and catheter-associated UTI, and are becoming increasingly resistant to antibiotics

  • Positive urine culture in the absence of symptoms should not be treated, except in pregnant women or those undergoing invasive genitourinary procedures

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The variation in bacteriology of urinary tract infection (UTI) according to population.
Figure 2: Geographical variation in the prevalence of uropathogenic E. coli resistant to selected antibiotics.
Figure 3: Symptomatic and bacteriologic cure rates at 7 days in two placebo-controlled trials (pivmecillinam versus placebo3 and nitrofurantoin versus placebo37) and an equivalency trial (ciprofloxacin versus ibruprofen [placebo]63), all performed in women with uncomplicated lower UTI.

Similar content being viewed by others

References

  1. Rubin, R. H., Shapiro, E. D., Andriole, V. T., Davis, R. J. & Stamm, W. E. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Infectious Diseases Society of America and the Food and Drug Administration. Clin. Infect. Dis. 15 (Suppl. 1), S216–S227 (1992).

    Article  PubMed  Google Scholar 

  2. Warren, J. W. et al. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin. Infect. Dis. 29, 745–758 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ferry, S. A., Holm, S. E., Stenlund, H., Lundholm, R. & Monsen, T. J. Clinical and bacteriological outcome of different doses and duration of pivmecillinam compared with placebo therapy of uncomplicated lower urinary tract infection in women: the LUTIW project. Scand. J. Prim. Health Care 25, 49–57 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nicolle, L. E. Asymptomatic bacteriuria—important or not? N. Engl. J. Med. 343, 1037–1039 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nicolle, L. E. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin. Infect. Dis. 40, 643–654 (2005).

    Article  PubMed  Google Scholar 

  6. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heidler, S. et al. The natural history of lower urinary tract symptoms in females: analysis of a health screening project. Eur. Urol. 52, 1744–1750 (2007).

    Article  PubMed  Google Scholar 

  8. Wollin, T., Laroche, B. & Psooy, K. Canadian guidelines for the management of asymptomatic microscopic hematuria in adults. Can. Urol. Assoc. J. 3, 77–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tomson, C. & Porter, T. Asymptomatic microscopic or dipstick haematuria in adults: which investigations for which patients? A review of the evidence. BJU Int. 90, 185–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Madeb, R. et al. Long-term outcome of patients with a negative work-up for asymptomatic microhematuria. Urology 75, 20–25 (2010).

    Article  PubMed  Google Scholar 

  11. Schmiemann, G., Kniehl, E., Gebhardt, K., Matejczyk, M. M. & Hummers-Pradier, E. The diagnosis of urinary tract infection: a systematic review. Dtsch Arztebl. Int. 107, 361–367 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tambyah, P. A. & Maki, D. G. Catheter-associated urinary tract infection is rarely symptomatic: a prospective study of 1,497 catheterized patients. Arch. Intern. Med. 160, 678–682 (2000).

    CAS  PubMed  Google Scholar 

  14. Tambyah, P. A. & Maki, D. G. The relationship between pyuria and infection in patients with indwelling urinary catheters: a prospective study of 761 patients. Arch. Intern. Med. 160, 673–677 (2000).

    CAS  PubMed  Google Scholar 

  15. Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 625–663 (2010).

    Article  PubMed  Google Scholar 

  16. Stamm, W. E. Scientific and clinical challenges in the management of urinary tract infections. Am. J. Med. 113 (Suppl. 1A), 1S–4S (2002).

    Article  PubMed  Google Scholar 

  17. Mulvey, M. A., Schilling, J. D., Martinez, J. J. & Hultgren, S. J. Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc. Natl Acad. Sci. USA 97, 8829–8835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laupland, K. B., Ross, T., Pitout, J. D., Church, D. L. & Gregson, D. B. Community-onset urinary tract infections: a population-based assessment. Infection 35, 150–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Imirzalioglu, C., Hain, T., Chakraborty, T. & Domann, E. Hidden pathogens uncovered: metagenomic analysis of urinary tract infections. Andrologia 40, 66–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. al-Wali, W., Hamilton-Miller, J. M., Joshi, S. & Brumfitt, W. A case of recurrently sexually transmitted urinary tract infection. Genitourin. Med. 65, 397–398 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailey, R. R., Peddie, B. A., Swainson, C. P. & Kirkpatrick, D. Sexual acquisition of urinary tract infection in a man. Nephron 44, 217–218 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Foxman, B. et al. Risk factors for second urinary tract infection among college women. Am. J. Epidemiol. 151, 1194–1205 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Foxman, B. et al. Uropathogenic Escherichia coli are more likely than commensal E. coli to be shared between heterosexual sex partners. Am. J. Epidemiol. 156, 1133–1140 (2002).

    Article  PubMed  Google Scholar 

  24. Foxman, B. et al. Condom use and first-time urinary tract infection. Epidemiology 8, 637–641 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. O'Neill, P. M., Talboys, C. A., Roberts, A. P. & Azadian, B. S. The rise and fall of Escherichia coli O15 in a London teaching hospital. J. Med. Microbiol. 33, 23–27 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Peirano, G. et al. High prevalence of ST131 isolates producing CTX-M-15 and CTX-M-14 among extended-spectrum-β-lactamase-producing Escherichia coli isolates from Canada. Antimicrob. Agents Chemother. 54, 1327–1330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freeman, J. T. et al. Community-onset genitourinary tract infection due to CTX-M-15-producing Escherichia coli among travelers to the Indian subcontinent in New Zealand. Clin. Infect. Dis. 47, 689–692 (2008).

    Article  PubMed  Google Scholar 

  28. Pitout, J. D. Infections with extended-spectrum β-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70, 313–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Vincent, C. et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 16, 88–95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaberg, D. R., Weinstein, R. A. & Stamm, W. E. Epidemics of nosocomial urinary tract infection caused by multiply resistant Gram-negative bacilli: epidemiology and control. J. Infect. Dis. 133, 363–366 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, W. C. et al. Catheter-associated urinary tract infections in intensive care units can be reduced by prompting physicians to remove unnecessary catheters. Infect. Control Hosp. Epidemiol. 25, 974–978 (2004).

    Article  PubMed  Google Scholar 

  32. Johnson, C. C. Definitions, classification, and clinical presentation of urinary tract infections. Med. Clin. North Am. 75, 241–252 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Foxman, B. & Brown, P. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect. Dis. Clin. North Am. 17, 227–241 (2003).

    Article  PubMed  Google Scholar 

  34. van der Kooi, T. I., Manniën, J., Wille, J. C. & van Benthem, B. H. Prevalence of nosocomial infections in The Netherlands, 2007–2008: results of the first four national studies. J. Hosp. Infect. 75, 168–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, K. K., Wong, C. K., Lo, S. F. & Ng, T. K. Is it necessary to catheterise the bladder routinely before gynaecological laparoscopic surgery? Aust. N. Z. J. Obstet. Gynaecol. 45, 380–383 (2005).

    Article  PubMed  Google Scholar 

  36. Little, P. et al. Presentation, pattern, and natural course of severe symptoms, and role of antibiotics and antibiotic resistance among patients presenting with suspected uncomplicated urinary tract infection in primary care: observational study. BMJ 340, b5633 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Christiaens, T. C. et al. Randomised controlled trial of nitrofurantoin versus placebo in the treatment of uncomplicated urinary tract infection in adult women. Br. J. Gen. Pract. 52, 729–734 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Katchman, E. A. et al. Three-day vs longer duration of antibiotic treatment for cystitis in women: systematic review and meta-analysis. Am. J. Med. 118, 1196–1207 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Foxman, B., Barlow, R., D'Arcy, H., Gillespie, B. & Sobel, J. D. Urinary tract infection: self-reported incidence and associated costs. Ann. Epidemiol. 10, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Saint, S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am. J. Infect. Control 28, 68–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hooton, T. M. et al. A prospective study of risk factors for symptomatic urinary tract infection in young women. N. Engl. J. Med. 335, 468–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Ki, M., Park, T., Choi, B. & Foxman, B. The epidemiology of acute pyelonephritis in South Korea, 1997–1999. Am. J. Epidemiol. 160, 985–993 (2004).

    Article  PubMed  Google Scholar 

  43. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weichhart, T., Haidinger, M., Hörl, W. H. & Säemann, M. D. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur. J. Clin. Invest. 38 (Suppl. 2), 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Song, J. & Abraham, S. N. Innate and adaptive immune responses in the urinary tract. Eur. J. Clin. Invest. 38 (Suppl. 2), 21–28 (2008).

    Article  PubMed  Google Scholar 

  46. Stamm, W. E., McKevitt, M., Roberts, P. L. & White, N. J. Natural history of recurrent urinary tract infections in women. Rev. Infect. Dis. 13, 77–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Hawn, T. R. et al. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS ONE 4, e8300 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lundstedt, A. C. et al. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J. Infect. Dis. 195, 1227–1234 (2007).

    Article  PubMed  Google Scholar 

  49. Hawn, T. R. et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS ONE 4, e5990 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sheinfeld, J., Schaeffer, A. J., Cordon-Cardo, C., Rogatko, A. & Fair, W. R. Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. J. Med. 320, 773–777 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Tempera, G. et al. The impact of prulifloxacin on vaginal lactobacillus microflora: an in vivo study. J. Chemother. 21, 646–650 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kurtaran, B. et al. Antibiotic resistance in community-acquired urinary tract infections: prevalence and risk factors. Med. Sci. Monit. 16, CR246–CR251 (2010).

    PubMed  Google Scholar 

  53. Colodner, R., Kometiani, I., Chazan, B. & Raz, R. Risk factors for community-acquired urinary tract infection due to quinolone-resistant E. coli. Infection 36, 41–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Sundqvist, M. et al. Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother. 65, 350–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Schito, G. C. et al. The ARESC study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 34, 407–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Karlowsky, J. A., Kelly, L. J., Thornsberry, C., Jones, M. E. & Sahm, D. F. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob. Agents Chemother. 46, 2540–2545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhanel, G. G. et al. Antibiotic resistance in outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). Int. J. Antimicrob. Agents 26, 380–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Moreira, E. D. Jr et al. Antimicrobial resistance of Escherichia coli strains causing community-acquired urinary tract infections among insured and uninsured populations in a large urban center. J. Chemother. 18, 255–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Alós, J. I., Serrano, M. G., Gómez-Garcés, J. L. & Perianes, J. Antibiotic resistance of Escherichia coli from community-acquired urinary tract infections in relation to demographic and clinical data. Clin. Microbiol. Infect. 11, 199–203 (2005).

    Article  PubMed  Google Scholar 

  60. DeBusscher, J., Zhang, L., Buxton, M., Foxman, B. & Barbosa-Cesnik, C. Persistent extended-spectrum β-lactamase urinary tract infection. Emerg. Infect. Dis. 15, 1862–1864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Doi, Y. et al. Community-acquired extended-spectrum β-lactamase producers, United States. Emerg. Infect. Dis. 13, 1121–1123 (2007).

    Article  PubMed  Google Scholar 

  62. Azap, O. K. et al. Risk factors for extended-spectrum β-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections. Clin. Microbiol. Infect. 16, 147–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Bleidorn, J., Gágyor, I., Kochen, M. M., Wegscheider, K. & Hummers-Pradier, E. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection? Results of a randomized controlled pilot trial. BMC Med. 8, 30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foxman, B. The epidemiology of urinary tract infection. Nat Rev Urol 7, 653–660 (2010). https://doi.org/10.1038/nrurol.2010.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing