Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Are buried salt bridges important for protein stability and conformational specificity?

Abstract

The side chains of Arg 31, Glu 36 and Arg 40 in Arc repressor form a buried salt-bridge triad. The entire salt-bridge network can be replaced by hydrophobic residues in combinatorial randomization experiments resulting in active mutants that are significantly more stable than wild type. The crystal structure of one mutant reveals that the mutant side chains pack against each other in an otherwise wild-type fold. Thus, simple hydrophobic interactions provide more stabilizing energy than the buried salt bridge and confer comparable conformational specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barlow, D.J. & Thornton, J.M. Ion-pairs in proteins. J. molec. Biol. 168, 867–885(1983).

    Article  CAS  Google Scholar 

  2. Perutz, M. & Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255, 256–259 (1975).

    Article  CAS  Google Scholar 

  3. Perutz, M. Electrostatic effects in proteins. Science 201, 1187–1191 (1978).

    Article  CAS  Google Scholar 

  4. Ruegg, C., Ammer, D. & Lerch, K. Comparison of amino acid sequence and thermostability of tyrosinase from three wild type strains of Neurospora crassa. J. biol. Chem. 257, 6420–6426 (1982).

    CAS  PubMed  Google Scholar 

  5. Fersht, A.R. Conformational equilibria in α- and δ-chymotrypsin. The energetics and importance of the salt bridge. J. molec. Biol. 64, 497–509 (1972).

    Article  CAS  Google Scholar 

  6. Anderson, D.E., Becktel, W.J. & Dahlquist, F.W. pH-induced denaturation of proteins: A single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29, 2403–2408 (1990).

    Article  CAS  Google Scholar 

  7. Horovitz, A., Serrano, L., Avron, B., Bycroft, M. & Fersht, A.R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J. molec. Biol. 216, 1031–1044 (1990).

    Article  CAS  Google Scholar 

  8. Erwin, C.R., Barnett, B.L., Oliver, J.D. & Sullivan, J.F. Effects of engineered salt bridges on the stability of subtilisin BPN'. Prot. Engng. 4, 87–97 (1990).

    Article  CAS  Google Scholar 

  9. Sali, D., Bycroft, M. & Fersht, A.R. Surface electrostatic interactions contribute little to stability of barnase. J. molec. Biol. 220, 779–778 (1991).

    Article  CAS  Google Scholar 

  10. Dao-Pin, S., Sauer, U., Nicholson, H. & Matthews, B.W. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry 30, 7142–7153 (1991).

    Article  Google Scholar 

  11. Hendsch, Z.S. & Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Prot. Sci. 3, 211–226 (1994).

    Article  CAS  Google Scholar 

  12. Raumann, B.E., Rould, M.A., Pabo, C.O. & Sauer, R.T. DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature 367, 754–757 (1994).

    Article  CAS  Google Scholar 

  13. Vershon, A.K., Bowie, J.U., Karplus, T.M. & Sauer, R.T. Isolation and analysis of Arc repressor mutants: Evidence for an unusual mechanism of DNA binding. Proteins 1, 302–311 (1986).

    Article  CAS  Google Scholar 

  14. Bowie, J.U. & Sauer, R.T. Identifying determinants of folding and activity for a protein of unknown structure. Proc. natn. Acad. Sci. U.S.A. 86, 2152–2156 (1989).

    Article  CAS  Google Scholar 

  15. Milla, M.E., Brown, B.M. & Sauer, R.T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nature struct. Biol. 1, 518–523 (1994).

    Article  CAS  Google Scholar 

  16. Brown, B.M., Milla, M.E., Smith, T.L. & Sauer, R.T. Scanning mutagenesis of the Arc repressor as a functional probe of operator recognition. Nature struct. Biol. 1, 164–168 (1994).

    Article  CAS  Google Scholar 

  17. Horovitz, A. & Fersht, A.R. Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J. molec. Biol. 214, 613–617 (1990).

    Article  CAS  Google Scholar 

  18. Bowie, J.U. & Sauer, R.T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry 28, 7139–7143 (1989).

    Article  CAS  Google Scholar 

  19. Chothia, C. The nature of the accessible and buried surfaces in proteins. J molec. Biol. 105, 1–14 (1976).

    Article  CAS  Google Scholar 

  20. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  21. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  22. Milla, M.E., Brown, B.M. & Sauer, R.T. P22 Arc repressor: Enhanced expression of unstable mutants by addition of polar C-terminal sequences. Prot. Sci. 2, 2198–2205 (1993).

    Article  CAS  Google Scholar 

  23. Bowie, J.U. & Sauer, R.T. Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J. biol. Chem. 264, 7596–7602 (1989).

    CAS  Google Scholar 

  24. Brown, B.M. & Sauer, R.T. Assembly of the Arc repressor-operator complex: Cooperative interactions between DNA-bound dimers. Biochemistry 32, 1354–1363 (1993).

    Article  CAS  Google Scholar 

  25. Milla, M.E. & Sauer, R.T. P22 Arc repressor: Folding kinetics of a single-domain, dimeric protein. Biochemistry 33, 1125–1133 (1994).

    Article  CAS  Google Scholar 

  26. Breg, J.N., van Opheusden, J.H.J., Burgering, M.J., Boelens, R. & Kaptein, R. Structure of Arc repressor in solution: Evidence for a family of β-sheet DNA-binding proteins. Nature 346, 586–589 (1990).

    Article  CAS  Google Scholar 

  27. Bonvin, A.M.J.J., Vis, H., Breg, J.N., Burgering, M.J.M., Boelens, R. & Kaptein, R. Nuclear magnetic resonance solution structure of the Arc repressor using relaxation matrix calculations. J. molec. Biol. 236, 328–341 (1994).

    Article  CAS  Google Scholar 

  28. Chakrabartty, A., Kortemme, T., Padmanabhan, S. & Baldwin, R.L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 32, 5560–5565 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldburger, C., Schildbach, J. & Sauer, R. Are buried salt bridges important for protein stability and conformational specificity?. Nat Struct Mol Biol 2, 122–128 (1995). https://doi.org/10.1038/nsb0295-122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing