Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca

Abstract

Cellulase E4 from Thermomonospora fusca is unusual in that it has characteristics of both exo- and endo-cellulases. Here we report the crystal structure of a 68K Mr fragment of E4 (E4-68) at 1.9 Å resolution. E4-68 contains both a family 9 catalytic domain, exhibiting an (α/α)6 barrel fold, and a family III cellulose binding domain, having an antiparallel β-sandwich fold. While neither of these folds is novel, E4-68 provides the first cellulase structure having interacting catalytic and cellulose binding domains. The complexes of E4-68 with cellopentaose, cellotriose and cellobiose reveal conformational changes associated with ligand binding and allow us to propose a catalytic mechanism for family 9 enzymes. We also provide evidence that E4 has two novel characteristics: first it combines exo- and endo- activities and second, when it functions as an exo-cellulase, it cleaves off cellotetraose units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walker, L. & Wilson, D. Engineering cellulases. Biores Technol 36, 3–14 (1991).

    Article  CAS  Google Scholar 

  2. Wyman, C.E., Bain, R.L., Hinman, N.D. & Stevens, D.J. Renewable energy: sources for fuels and electricity. (Island Press, Washington, DC; 1993).

    Google Scholar 

  3. Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    Article  CAS  Google Scholar 

  4. Tomme, P., Warren, R.A.J., Miller, R.C.J., Kilburn, D.G. & Gilkes, N.R. Cellulose-binding domains: Classification and properties in ACS Symposium Series (eds Saddler, J.N. & Penner, M.H.) 142–163 (American Chemical Society, Washington DC; 1994).

    Google Scholar 

  5. Henrissat, B. & Bairoch, A. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    Article  CAS  Google Scholar 

  6. Bairoch, A., Bucher, P. & Hoffmann, K. The PROSITE database. Nucl. Acid. Res. 25 217–221 (1997).

    Article  CAS  Google Scholar 

  7. Irwin, D.C., Spezio, M., Walker, L.P. & Wilson, D.B. Activity studies of eight purified cellulases specificity synergism and binding domain effects. Biotechnol. Bioeng. 42, 1002–1013 (1993).

    Article  CAS  Google Scholar 

  8. Barr, B.K., Hsieh, Y.L., Ganem, B. & Wilson, D.B. Identification of two functionally different classes of exocellulases. Biochemistry 35, 586–592 (1996).

    Article  CAS  Google Scholar 

  9. Juy, M., et al. Three-dimensional structure of a thermostable bacterial cellulase. Nature 357, 89–91 (1992).

    Article  CAS  Google Scholar 

  10. Tormo, J., et al. Crystal structure of a bacterial family-Ill cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15, 5739–5751 (1996).

    Article  CAS  Google Scholar 

  11. Jauris, S., et al. Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol. Gen. Genet. 223, 258–267 (1990).

    Article  CAS  Google Scholar 

  12. Bronnenmeier, K. & Staudenbauer, W.L. Resolution of Clostridium stercorarium cellulase by fast protein liquid chromatography (FPLC). Appl. Microbiol. Biotechnol. 27, 432–436 (1988).

    Article  CAS  Google Scholar 

  13. Meinke, A., et al. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J Bacteriol 173, 308–314 (1991).

    Article  CAS  Google Scholar 

  14. Sander, C. & Schneider, R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct Funct Genet 9, 56–68 (1991).

    Article  CAS  Google Scholar 

  15. Diederichs, K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins Struct. Funct. Gen. 23, 187–195 (1995).

    Article  CAS  Google Scholar 

  16. Alzari, P.M., Souchon, H. & Dominguez, R. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4, 265–275 (1996).

    Article  CAS  Google Scholar 

  17. Aleshin, A., Golubev, A., Firsov, L.M. & Honzatko, R.B. Crystal structure of glucoamylase from Aspergillus awamori var-x100 to 2.2 Å resolution. J. Biol. Chem. 267, 19291–19298 (1992).

    CAS  PubMed  Google Scholar 

  18. Flanagen, K., Walahaw, J., Price, S.L. & Goodfellow, J.M. Solvent interactions with pi ring systems in proteins. Protein Engng. 8, 109–116 (1995).

    Article  Google Scholar 

  19. Xu, G.Y., et al. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34, 6993–7009 (1995).

    Article  CAS  Google Scholar 

  20. Tews, I., et al. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nature Struct. Biol. 3, 638–648 (1996).

    Article  CAS  Google Scholar 

  21. Shimon, L.J.W., et al. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure 5, 381–390 (1997).

    Article  CAS  Google Scholar 

  22. Davies, G.J., Tolley, S.P., Henrissat, B., Hjort, C. & Schulein, M. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry 34, 16210–16220 (1995).

    Article  CAS  Google Scholar 

  23. Spezio, M., Wilson, D.B. & Karplus, P.A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32, 9906–9916 (1993).

    Article  CAS  Google Scholar 

  24. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K.C. & Jones, T.A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386 (1990).

    Article  CAS  Google Scholar 

  25. Jung, E.D., et al. Dna sequences and expression in streptomyces-lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59, 3032–3043 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Koshland, D.E.J. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).

    Article  CAS  Google Scholar 

  27. Chauvaux, S., Beguin, P. & Aubert, J.P. Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase celd. J Biol Chem 267, 4472–4478 (1992).

    CAS  PubMed  Google Scholar 

  28. Tomme, P., et al. Identification of a histidyl residue in the active center of endoglucanase d from clostridium-thermocellum. J. Biol. Chem. 266, 10313–10318 (1991).

    CAS  PubMed  Google Scholar 

  29. Tomme, P., Van, B.J. & Claeyssens, M. Modification of catalytically important carboxyl residues in endoglucanase D from Clostridium thermocellum. Biochem. J. 285, 319–324 (1992).

    Article  CAS  Google Scholar 

  30. Tanaka, Y., Tao, W., Blanchard, J.S. & Hehre, E.J. Transition state structures for the hydrolysis of alpha-D-glucopyranosyl fluoride by retaining and inverting reactions of glycosylases. J. Biol. Chem. 269, 32306–32312 (1994).

    CAS  PubMed  Google Scholar 

  31. Sakon, J., Adney, W.S., Himmel, M.E., Thomas, S.R. & Karplus, P.A. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35, 10648–10660 (1996).

    Article  CAS  Google Scholar 

  32. McCarter, J.D. & Withers, S.G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  Google Scholar 

  33. Sacemski, I.I. & Lienhard, G.E. The effect of gadolinium ion on the binding of inhibitors and substrates to lysozyme. J. Biol. Chem. 249, 2932–2938 (1974).

    Google Scholar 

  34. Poole, D.M., Hazlewood, G.P., Huskisson, N.S., Virden, R. & Gilbert, H.J. The role of conserved tryptophan residues in the interaction of a bacterial cellulose binding domain with its ligand. FEMS Microbiol Lett 106, 77–83 (1993).

    Article  CAS  Google Scholar 

  35. Din, N., et al. The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi: Evidence for the involvement of tryptophan residues in binding. Mol. Microbiol. 11, 747–755 (1994).

    Article  CAS  Google Scholar 

  36. Linder, M., et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Prot. Sci. 4, 1056–1064 (1995).

    Article  CAS  Google Scholar 

  37. Barr, B.K. & Wilson, D.B. unpublished result. (1997). [AUTHOR: this cannot be cited in the reference list. Must be cited in the text as (B.K. Barr & D.B. Wilson, unpublished results) and removed from here. You must then renumber the following refs in the ref. list and throughout the text]

  38. Zhang, S., Lao, G. & Wilson, D.B. Characterization of a Thermomonospora fusca exocellulase. Biochemistry 34, 3386–3395 (1995).

    Article  CAS  Google Scholar 

  39. Cudney, B., Patel, S., Weisgraber, K., Newhouse, Y. & McPherson, A. Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr. Sect D 50, 414–423 (1994).

    Article  CAS  Google Scholar 

  40. Jancarik, J. & Kim, S.H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  41. Hamlin, R. Multiwire area X-ray diffractometers in Methods in Enzymology-Diffraction Methods for Biological Macromolecules (eds. Wyckoff, H.W., Hirs, C.H.W. & Timasheff, S.N.) 416–451 (Academic Press, Orlando, Florida; 1985).

    Google Scholar 

  42. Otwinowski, Z. Oscillation data reduction program. 1-56-62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  43. Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr Sec A 46, 467–473 (1990).

    Article  Google Scholar 

  44. Furey, W. & Swaminathan, S. PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules in Methods in Enzymology: macromolecular crystallography (eds Carter, C. & Sweet, R.) in the press (Academic Press, Orlando, Florida; 1996).

    Google Scholar 

  45. Sack, J.S. Chain - a crystallographic modeling program. J. Mol. Graph. 6, 224–225 (1988).

    Article  Google Scholar 

  46. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  47. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr. Sect A 47, 392–400 (1991).

    Article  Google Scholar 

  48. Lao, G., Ghangas, G.S., Jung, E.D. & Wilson, D.B. DNA sequences of three beta-1 4-endoglucanase genes from Thermomonospora fusca. J Bacteriol 173, 3397–3407 (1991).

    Article  CAS  Google Scholar 

  49. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  50. Bagnara-Tardif, C., et al. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene 119, 17–28 (1992).

    Article  CAS  Google Scholar 

  51. Hazlewood, G.P., Davidson, K., Laurie, J.I., Huskisson, N.S. & Gilbert, H.J. Gene sequence and properties of Cell, a family E endoglucanase from Clostridium thermocellum. J. Gen. Microbiol. 139, 307–316 (1993).

    Article  CAS  Google Scholar 

  52. Navarro, A., Chebrou, M.C., Beguin, P. & Aubert, J.P. Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Res. Microbiol. 142, 927–936 (1991).

    Article  CAS  Google Scholar 

  53. Shoseyov, O., Hamamoto, T., Foong, F. & Doi, R.H. Cloning of Clostridium cellulovorans endo-1,4-beta-glucanase genes. Biochem. Biophys. Res. Commun. 169, 667–672 (1990).

    Article  CAS  Google Scholar 

  54. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  55. IUPAC-IUB. Symbols for specifying the conformation of polysaccharide chains. Eur. J. Biochem. 131, 5–7 (1983).

  56. Gessler, K., et al. Crystal structure of beta-D-cellotetraose hemihydrate with implications for the structure of cellulose II. Science 266, 1027–1029 (1994).

    Article  CAS  Google Scholar 

  57. Taylor, J.S., Teo, B., Wilson, D.B. & Brady, J.W. Conformational modeling of substrate binding to endocellulase E2 from Thermomonospora fusca. Protein Engng. 8, 1145–1152 (1995).

    Article  CAS  Google Scholar 

  58. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  59. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakon, J., Irwin, D., Wilson, D. et al. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Mol Biol 4, 810–818 (1997). https://doi.org/10.1038/nsb1097-810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1097-810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing