Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translocation of botulinum neurotoxin light chain protease through the heavy chain channel

Abstract

Clostridial botulinum neurotoxins (BoNTs) abort the process of neurotransmitter release at presynaptic motor nerve terminals, causing muscle paralysis. An enigmatic step in the intoxication process is the mechanism by which the neurotoxin heavy chain (HC) forms the conduit for the translocation of the light chain (LC) protease across the endosomal membrane into the cytosol, its site of action. Here we investigate the mechanism of LC translocation by using the combined detection of channel currents and substrate proteolysis, the two hallmark activities of BoNT. Our data are consistent with the translocation of the LC through the HC channel and show that the LC protease activity is retrieved in the trans compartment after translocation. We propose that the BoNT HC–LC complex embedded in the membrane is a transmembrane chaperone, a dynamic structural device that prevents aggregation and achieves translocation of the LC. In this regard, the complex is similar to the protein conducting/translocating channels of the endoplasmic reticulum, mitochondria and chloroplasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Channel formation by BoNT A and HC A in lipid bilayers.
Figure 2: Blocking of HC A channels by the LC A.
Figure 3: Detection of the endopeptidase activity of translocated LC A in bilayer experiments.
Figure 4: BoNT A endopeptidase activity correlates with BoNT A channel activity and the unfolding of LC A.

Similar content being viewed by others

References

  1. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  Google Scholar 

  2. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  Google Scholar 

  3. Blasi, J. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163 (1993).

    Article  CAS  Google Scholar 

  4. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  CAS  Google Scholar 

  5. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  6. Jahn, R. & Sudhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  7. Overly, C.C., Lee, K.D., Berthiaume, E. & Hollenbeck, P.J. Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc. Natl. Acad. Sci. USA 92, 3156–3160 (1995).

    Article  CAS  Google Scholar 

  8. Sonawane, N.D., Thiagarajah, J.R. & Verkman, A.S. Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator: evidence for chloride accumulation during acidification. J. Biol. Chem. 277, 5506–5513 (2002).

    Article  CAS  Google Scholar 

  9. Lacy, D.B., Tepp, W., Cohen, A.C., DasGupta, B.R. & Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5, 898–902 (1998).

    Article  CAS  Google Scholar 

  10. Swaminathan, S. & Eswaramoorthy, S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 7, 693–699 (2000).

    Article  CAS  Google Scholar 

  11. Donovan, J.J., Simon, M.I. & Montal, M. Insertion of diphtheria toxin into and across membranes: role of phosphoinositide asymmetry. Nature 298, 669–672 (1982).

    Article  CAS  Google Scholar 

  12. Gambale, F. & Montal, M. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J. 53, 771–783 (1988).

    Article  CAS  Google Scholar 

  13. Oblatt-Montal, M., Yamazaki, M., Nelson, R. & Montal, M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci. 4, 1490–1497 (1995).

    Article  CAS  Google Scholar 

  14. Hoch, D.H. et al. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA 82, 1692–1696 (1985).

    Article  CAS  Google Scholar 

  15. Blaustein, R.O., Germann, W.J., Finkelstein, A. & DasGupta, B.R. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett. 226, 115–120 (1987).

    Article  CAS  Google Scholar 

  16. Sheridan, R.E. Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. Toxicon 36, 703–717 (1998).

    Article  CAS  Google Scholar 

  17. Oh, K.J., Senzel, L., Collier, R.J. & Finkelstein, A. Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc. Natl. Acad. Sci. USA 96, 8467–8470 (1999).

    Article  CAS  Google Scholar 

  18. Smart, O.S., Breed, J., Smith, G.R. & Sansom, M.S. A novel method for structure-based prediction of ion channel conductance properties. Biophys. J. 72, 1109–1126 (1997).

    Article  CAS  Google Scholar 

  19. Mandel, R., Ryser, H.J., Ghani, F., Wu, M. & Peak, D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc. Natl. Acad. Sci. USA 90, 4112–4116 (1993).

    Article  CAS  Google Scholar 

  20. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  Google Scholar 

  21. Tsai, B., Rodighiero, C., Lencer, W.I. & Rapoport, T.A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948 (2001).

    Article  CAS  Google Scholar 

  22. Stebbins, C.E. & Galan, J.E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).

    Article  CAS  Google Scholar 

  23. Shindyalov, I.N. & Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998).

    Article  CAS  Google Scholar 

  24. Ren, J. et al. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science 284, 955–957 (1999).

    Article  CAS  Google Scholar 

  25. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  Google Scholar 

  26. Breyton, C., Haase, W., Rapoport, T.A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002).

    Article  CAS  Google Scholar 

  27. Truscott, K.N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 8, 1074–1082 (2001).

    Article  CAS  Google Scholar 

  28. Hinnah, S.C., Wagner, R., Sveshnikova, N., Harrer, R. & Soll, J. The chloroplast protein import channel toc75: pore properties and interaction with transit peptides. Biophys. J. 83, 899–911 (2002).

    Article  CAS  Google Scholar 

  29. Heins, L. et al. The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J. 21, 2616–2625 (2002).

    Article  CAS  Google Scholar 

  30. Montal, M. Formation of bimolecular membranes from lipid monolayers. Methods Enzymol. 32, 545–554 (1974).

    Article  CAS  Google Scholar 

  31. Li, L. & Singh, B.R. High-level expression, purification, and characterization of recombinant type A botulinum neurotoxin light chain. Protein Expr. Purif. 17, 339–344 (1999).

    Article  CAS  Google Scholar 

  32. Blanes-Mira, C. et al. Thermal stabilization of the catalytic domain of botulinum neurotoxin E by phosphorylation of a single tyrosine residue. Biochemistry 40, 2234–2242 (2001).

    Article  CAS  Google Scholar 

  33. Acevedo, B. et al. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin. Chim. Acta 317, 55–63 (2002).

    Article  CAS  Google Scholar 

  34. Canaves, J.M. & Montal, M. Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. J. Biol. Chem. 273, 34214–34221 (1998).

    Article  CAS  Google Scholar 

  35. Li, L. & Singh, B.R. Spectroscopic analysis of pH-induced changes in the molecular features of type A botulinum neurotoxin light chain. Biochemistry 39, 6466–6474 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Goodnough for BoNT A and its individual chains; B.R. Singh and R.C. Stevens for the recombinant clones of BoNT A HC, LC and SNAP-25b; and N. Gude and J. Santos for perceptive comments. The project was supported by the U.S. Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Montal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koriazova, L., Montal, M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Mol Biol 10, 13–18 (2003). https://doi.org/10.1038/nsb879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing