Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog

Abstract

Dipeptidyl peptidase IV (DPP-IV/CD26) is a multifunctional type II transmembrane serine peptidase. This enzyme contributes to the regulation of various physiological processes, including blood sugar homeostasis, by cleaving peptide hormones, chemokines and neuropeptides. We have determined the 2.5 Å structure of the extracellular region of DPP-IV in complex with the inhibitor valine-pyrrolidide. The catalytic site is located in a large cavity formed between the α/β-hydrolase domain and an eight-bladed β-propeller domain. Both domains participate in inhibitor binding. The structure indicates how substrate specificity is achieved and reveals a new and unexpected opening to the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of DPP-IV.
Figure 2: Structural comparison of DPP-IV and POP.
Figure 3: Secondary structure of DPP-IV shown over the amino acid sequence.
Figure 4: Active site of DPP-IV.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24 (1999).

    Article  CAS  Google Scholar 

  2. Korom, S. et al. Inhibition of CD26/dipeptidyl peptidase IV activity in vivo prolongs cardiac allograft survival in rat recipients. Transplantation 63, 1495–1500 (1997).

    Article  CAS  Google Scholar 

  3. Tanaka, S. et al. Suppression of arthritis by the inhibitors of dipeptidyl peptidase IV. Int. J. Immunopharmacol. 19, 15–24 (1997).

    Article  CAS  Google Scholar 

  4. Steinbrecher, A. et al. Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-β 1 secretion in vivo. J. Immunol. 166, 2041–2048 (2001).

    Article  CAS  Google Scholar 

  5. De Meester, I., Korom, S., Van Damme, J. & Scharpe, S. CD26, let it cut or cut it down. Immunol. Today 20, 367–375 (1999).

    Article  CAS  Google Scholar 

  6. Marguet, D. et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. USA 97, 6874–6879 (2000).

    Article  CAS  Google Scholar 

  7. Deacon, C.F., Hughes, T.E. & Holst, J.J. Dipeptidyl-peptidase-iv inhibition potentiates the insulinotropic effect of glucagon-like peptide-1 in the anesthetized pig. Diabetes 47, 764–769 (1998).

    Article  CAS  Google Scholar 

  8. Pederson, R.A. et al. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide-1 receptor (−/−)-mice. Diabetes 47, 1046–1052 (1998).

    Article  CAS  Google Scholar 

  9. Pauly, R.P. et al. Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor ile-thiazolidide. Metab. Clin. Exp. 48, 385–389 (1999).

    Article  CAS  Google Scholar 

  10. Balkan, B., Kwasnik, L., Miserendino, R., Holst, J.J. & Li, X. Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1(7-36 amide) concentrations and improves oral glucose tolreance in obese Zucker rats. Diabetology 42, 1324–1331 (1999).

    Article  CAS  Google Scholar 

  11. Ahren, B. et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 25, 869–875 (2002).

    Article  CAS  Google Scholar 

  12. Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S.F. & Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261, 466–469 (1993).

    Article  CAS  Google Scholar 

  13. Girardi, A.C.C., Degray, B.C., Nagy, T., Biemesderfer, D. & Aronson, P.S. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J. Biol. Chem. 276, 46671–46677 (2001).

    Article  CAS  Google Scholar 

  14. Ishii, T. et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc. Natl. Acad. Sci. USA 98, 12138–12143 (2001).

    Article  CAS  Google Scholar 

  15. Morimoto, C. & Schlossman, S.F. The structure and function of cd26 in the T-cell immune-response. Immunol. Rev. 161, 55–70 (1998).

    Article  CAS  Google Scholar 

  16. Wesley, U.V., Albino, A.P., Tiwari, S. & Houghton, A.N. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic. J. Exp. Med. 190, 311–322 (1999).

    Article  CAS  Google Scholar 

  17. Marguet, D. et al. cDNA cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase IV (CD26) included in a subgroup of serine proteases. J. Biol. Chem. 267, 2200–2208 (1992).

    CAS  PubMed  Google Scholar 

  18. Gorrell, M.D., Gysbers, V. & McCaughan, G.W. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol. 54, 249–264 (2001).

    Article  CAS  Google Scholar 

  19. Fulop, V., Bocskei, Z. & Polgar, L. Prolyl oligopeptidase: an unusual β-propeller domain regulates proteolysis. Cell 94, 161–170 (1998).

    Article  CAS  Google Scholar 

  20. Abbott, C.A.G. & Gorrell, M.D. The family of CD26/DPIV and related ectopeptidases. in Ectopeptidases: CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine and Biology (eds. Langner, J & Ansorge, S.) 171–184 (Kluwer/Plenum, New York; 2002).

    Chapter  Google Scholar 

  21. Abbott, C.A., McCaughan, G.W., Levy, M.T., Church, W.B. & Gorrell, M.D. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted β propeller domain. Eur. J. Biochem. 266, 798–810 (1999).

    Article  CAS  Google Scholar 

  22. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  23. Fulop, V. & Jones, D.T. β-propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721 (1999).

    Article  CAS  Google Scholar 

  24. Fulop, V., Szeltner, Z. & Polgar, L. Catalysis of serine oligopeptidases is controlled by a gating filter mechanism. EMBO Rep. 1, 277–281 (2000).

    Article  CAS  Google Scholar 

  25. Abbott, C.A., McCaughan, G.W. & Gorrell, M.D. Two highly conserved glutamic acid residues in the predicted β propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett. 458, 278–284 (1999).

    Article  CAS  Google Scholar 

  26. Reva, B., Finkelstein, A. & Topiol, S. Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV). Proteins 47, 180–193 (2002).

    Article  CAS  Google Scholar 

  27. Brandt, W. Development of a tertiary-structure model of the C-terminal domain of DPP IV. Adv. Exp. Med. Biol. 477, 97–101 (2000).

    Article  CAS  Google Scholar 

  28. De Meester, I., Vanhoof, G., Lambeir, A.M. & Scharpé, S. Use of immobilized adenosine-deaminase (EC 3.5.4.4) for the rapid purification of native human CD26 dipeptidyl peptidase IV (EC 3.4. 14.5). J. Immunol. Methods 189, 99–105 (1996).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  30. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  31. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  32. de La Fotelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  33. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  34. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  35. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.F. Nielsen for MALDI-MS analysis, L. Thim for N-terminal amino acid sequencing and S. Kaltoft, B.B. Knudsen, L.L. Nilausen Schmidt and B. Rosenberg for technical assistance. L. Gordon is thanked for help during data collection at ESRF and L.F. Iversen, S.E. Bjørn, A. Kanstrup and R.D. Carr for fruitful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne B. Rasmussen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, H., Branner, S., Wiberg, F. et al. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Mol Biol 10, 19–25 (2003). https://doi.org/10.1038/nsb882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing