Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-induced transmembrane signaling in the cobalamin transporter BtuB

Abstract

The outer membranes of Gram-negative bacteria possess transport proteins essential for uptake of scarce nutrients. In TonB-dependent transporters, a conserved sequence of seven residues, the Ton box, faces the periplasm and interacts with the inner membrane TonB protein to energize an active transport cycle. A critical mechanistic step is the structural change in the Ton box of the transporter upon substrate binding; this essential transmembrane signaling event increases the affinity of the transporter for TonB and enables active transport to proceed. We have solved crystal structures of BtuB, the outer membrane cobalamin transporter from Escherichia coli, in the absence and presence of cyanocobalamin (vitamin B12). In these structures, the Ton box is ordered and undergoes a conformational change in the presence of bound substrate. Calcium has been implicated as a necessary factor for the high-affinity binding (Kd 0.3 nM) of cyanocobalamin to BtuB. We observe two bound calcium ions that order three extracellular loops of BtuB, thus providing a direct (and unusual) structural role for calcium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental electron density and the structure of BtuB.
Figure 2: Crystallographic structures of BtuB.
Figure 3: Substrate-induced conformational change in the Ton box.
Figure 4: Experimental determination of bound cyanocobalamin and calcium, and their effects upon BtuB structure
Figure 5: Calcium and cyanocobalamin binding in BtuB
Figure 6: Structural differences between the apo BtuB, Ca2+–BtuB and Ca2+–B12–BtuB structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Postle, K. Active transport by customized β-barrels. Nat. Struct. Biol. 6, 3–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kadner, R.J. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol. Microbiol. 4, 2027–2033 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Postle, K. TonB protein and energy transduction between membranes. J. Bioenerg. Biomembr. 25, 591–601 (1993).

    CAS  PubMed  Google Scholar 

  4. Braun, V. Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD–dependent receptor proteins. FEMS Microbiol. Rev. 16, 295–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lundrigan, M.D. & Kadner, R.J. Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. J. Biol. Chem. 261, 10797–10801 (1986).

    CAS  PubMed  Google Scholar 

  6. Schramm, E., Mende, J., Braun, V. & Kamp, R.M. Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors. J. Bacteriol. 169, 3350–3357 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heller, K., Mann, B.J. & Kadner, R.J. Cloning and expression of the gene for the vitamin B12 receptor protein in the outer membrane of Escherichia coli. J. Bacteriol. 161, 896–903 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schoffler, H. & Braun, V. Transport across the outer membrane of Escherichia coli K12 via the FhuA receptor is regulated by the TonB protein of the cytoplasmic membrane. Mol. Gen. Genet. 217, 378–383 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Larsen, R.A., Foster-Hartnett, D., McIntosh, M.A. & Postle, K. Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions. J. Bacteriol. 179, 3213–3221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locher, K.P. et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95, 771–778 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Ferguson, A.D., Hofmann, E., Coulton, J.W., Diederichs, K. & Welte, W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282, 2215–2220 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Buchanan, S.K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson, A.D. et al. Structural basis of gating by the outer membrane transporter FecA. Science 295, 1715–1719 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Roth, J.R., Lawrence, J.G. & Bobik, T.A. Cobalamin (coenzyme B12): synthesis and biological significance. Annu. Rev. Microbiol. 50, 137–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bradbeer, C., Reynolds, P.R., Bauler, G.M. & Fernandez, M.T. A requirement for calcium in the transport of cobalamin across the outer membrane of Escherichia coli. J. Biol. Chem. 261, 2520–2523 (1986).

    CAS  PubMed  Google Scholar 

  16. Di Masi, D.R., White, J.C., Schnaitman, C.A. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bradbeer, C., Woodrow, M.L. & Khalifah, L.I. Transport of vitamin B12 in Escherichia coli: common receptor system for vitamin B12 and bacteriophage BF23 on the outer membrane of the cell envelope. J. Bacteriol. 125, 1032–1039 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Locher, K.P., Lee, A.T. & Rees, D.C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Borths, E.L., Locher, K.P., Lee, A.T. & Rees, D.C. The structure of Esherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. USA 99, 16642–16647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matthews, B.W. et al. Structure of thermolysin. Nat. New Biol. 238, 41–43 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. Hogle, J., Kirchhausen, T. & Harrison, S.C. Divalent cation sites in tomato bushy stunt virus: difference maps at 2.9 Å resolution. J. Mol. Biol. 171, 95–100 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Emsley, J. et al. Structure of pentameric human serum amyloid P component. Nature 367, 338–345 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Shrive, A.K. et al. Three dimensional structure of human C-reactive protein. Nat. Struct. Biol. 3, 346–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Ferguson, A.D. et al. Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure 9, 707–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Cadieux, N. & Kadner, R.J. Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proc. Natl. Acad. Sci. USA 96, 10673–10678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merianos, H.J., Cadieux, N., Lin, C.H., Kadner, R.J. & Cafiso, D.S. Substrate-induced exposure of an energy-coupling motif of a membrane transporter. Nat. Struct. Biol. 7, 205–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Fanucci, G.E. et al. Substrate-induced conformational changes of the periplasmic N-terminus of an outer-membrane transporter by site-directed spin labelling. Biochemistry 42, 1391–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Langen, R., Oh, K.J., Cascio, D. & Hubbell, W.L. Crystal structures of spin-labelled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 8396–8405 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Moeck, G.S. & Letellier, L. Characterization of in vitro interactions between a truncated TonB protein from Escherichia coli and the outer membrane receptors FhuA and FepA. J. Bacteriol. 183, 2755–2764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Usher, K.C., Özkan, E., Gardner, K.H. & Deisenhofer, J. The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel domain. Proc. Natl. Acad. Sci. USA 98, 10676–10681 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cadieux, N. et al. Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J. Bacteriol. 184, 706–717 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chimento, D.P., Mohanty, A.K., Kadner, R.J. & Wiener, M.C. Crystallization and preliminary X-ray crystallographic analysis of the Escherichia coli outer membrane cobalamin transporter BtuB. Acta Crystallogr. D 59, 509–511 (2003).

    Article  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Miller, R. & Gallo, S.M. SnB: crystal structure determination via Shake-and-Bake. J. Appl. Crystallogr. 27, 613–621 (1994).

    Article  CAS  Google Scholar 

  35. Grosse-Kuntsleve, R.W. & Brunger, A.T. A highly automated heavy-atom search procedure for macromolecular structures. Acta Crystallogr. D 55, 1568–1577 (1999).

    Article  Google Scholar 

  36. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. de La Fortelle, E. & Bricogne, G. SHARP: maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 176, 472–494 (1997).

    Article  Google Scholar 

  38. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F-1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structure by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Winn, M.D., Isupov, M.N. & Nurshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  43. Terwilliger, T.C. Map-likelihood phasing. Acta Crystallogr. D 57, 1763–1775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  46. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  48. Merrit, E. & Murphy, M. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  49. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP: graphical representation and analysis of surface properties. Biophys. J. 64, 166–170 (1993).

    Google Scholar 

  50. Howlin, B., Butler, S.A., Moss, D.S., Harris, G.W. & Driessen, H.P.C. TLSANL: TLS parameter analysis program for segmented anisotropic refinement of macromolecular structures. J. Appl. Crystallogr. 26, 622–624 (1993).

    Article  Google Scholar 

  51. Brunger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Purdy and S. Derevakonda for assistance with data collection; W. Minor for useful suggestions related to data collection and processing; C. Bradbeer and N. Cadieux for useful discussion; and R. Kretsinger, R. Nakamoto and E. Perozo for critical reading of the manuscript. This work was supported by grants from the National Institutes of Health. Synchrotron facilities are supported by the Department of Energy (APS SBC, APS IMCA, NSLS X25), Industrial Macromolecular Crystallography Association (APS IMCA), National Science Foundation (CHESS F1) and National Institutes of Health (NSLS X25, CHESS F1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Wiener.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimento, D., Mohanty, A., Kadner, R. et al. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Mol Biol 10, 394–401 (2003). https://doi.org/10.1038/nsb914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing